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Abstract: Australia is one of the most flammable continents in the world. The southeastern region of the 
continent, where the population is densely settled, is susceptible to low frequency and high intensity 
bushfires that can threaten human lives and cause extensive loss of properties. This paper describes the 
development and validation of spatial models for bushfire occurrence in South-Eastern Australia, especially 
in New South Wales, Victoria and the Australian Capital Territory.  

The active fire database from the Moderate Resolution Imaging Spectroradiometer (MODIS) is used as 
original data source of fire activity over the 11-year period 2003-2013. Those active fire detections are 
grouped into burning events using the Fire Spread Reconstruction approach (FSR) algorithm based on the 
spatial and temporal proximity between fire detections. Fire occurrence point is defined as the ignition point 
of each identified event. Univariate and multiple logistic regression models are investigated for the 
comprehensive understanding of determinants contributing to the spatial distribution of bushfires. The 
probability of bushfire occurrence in South-Eastern Australia is also studied for the prediction of future fire 
occurrence.  

Bushfires in the study area are significantly influenced by both environmental and anthropogenic variables. 
The mean annual precipitation positively influences the fire incidence, because the semi-arid regions lack the 
fuels necessary for a fire to start, while the coastal regions with abundant rain provide ample fuels for fire 
ignition. This finding is inconsistent with that at a small landscape scale. Fire probabilities are different 
regarding various land cover types. Forests are most likely to burn because they are covered by heavy fuel 
loads. Savannas are equivalently fire-prone because they are fundamentally easy to ignite. Permanent 
wetlands are also susceptible to fire possibly due to the influence of climate change and urban expansion. 
Shrublands are less fire-prone because of the low-level shrub canopy cover. Fires are also found to distribute 
in areas near the zero meso-scale elevation residual contour, which is consistent with the previous finding. 
Anthropogenic variables also show predictive power because of the influence of human activities on fire 
occurrence.  

The final model for the probability of bushfire occurrence include mean annual precipitation, MODIS land 
cover, distance to zero meso-scale elevation residual contour, distance to secondary road and distance to 
railway. The bushfire probability map was generated accordingly. From the information provided by the 
quantitative statistics and the bushfire probability map, bushfires in the study area mostly likely to occur in 
coastal and mountainous areas close to various types of infrastructure and zero meso-scale elevation residual 
contours, as well as on forests, savannas and permanent wetlands, while they rarely occurred inland. It is 
concluded that the proposed model provides practical guidance for fire management actions in South-Eastern 
Australia. 
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1. INTRODUCTION 

Australia is known as one of the most fire-prone lands in the world. Quick responses to fire activities are 
required in the southeastern region of the continent because bushfires in this densely settled area can cause 
massive loss of lives and properties (Russell-Smith et al., 2007). Accurate predictions of when and where 
bushfires will occur are crucial in this regard. Statistics on fire occurrence can be used to model the patterns 
of fire activities and identify fire-prone areas. The results of these models can support planning and decision-
making in fire management activities.  

Environmental and anthropogenic factors regulate the spatial patterns of bushfires across multiple scales. At 
landscape or sub-regional scales, the traditional fire environment triangle illustrates the influence of 
environmental variables (weather, fuels, and topography) on fire behaviour. At broader scales, ignitions, 
climate and vegetation are three factors that are considered to be significant in regulating the fire regime. Fire 
climate is found to affect bushfire occurrence (e.g. Bradstock et al., 2009; Preisler et al., 2004). Land cover 
types affect bushfire incidence due to their connection with fuel load and type (Gumming, 2001). Fuel 
moisture content and air temperature (Sharples, 2009) are influenced by topography, which indirectly affects 
the chance of fire ignition. Anthropogenic variables are also powerful indicators of fire incidence in many 
regions around the world (e.g. Vilar et al., 2010). 

Fire occurrence studies have been conducted in North America (e.g. Preisler et al., 2004), Europe (e.g. Vilar 
et al., 2010) and Australia (e.g. Bradstock et al., 2009), however, none of them were undertaken at a sub-
continental scale in south-eastern Australia. High accuracy satellite-based monitoring systems such as the 
Moderate Resolution Imaging Spectroradiometer (MODIS) make it possible to understand fire occurrence at 
a broad scale. Specifically, the active fire products (Giglio et al., 2003) derived from MODIS datasets have 
been used to study spatial and temporal patterns of bushfire occurrence. In some countries, the Fire Spread 
Reconstruction (FSR) algorithm is used to recreate fire development and identify ignition points in fire 
events (Loboda & Csiszar, 2007). However, the relationship between MODIS-based fire locations and their 
determinants in Australia is not well understood. 

In this study, fire occurrence points are identified from MODIS active fire locations during the time period 
from 2003-2013 using the FSR algorithm. Binary logistic regression models are used to explore the 
relationships between these fire occurrence points and other explanatory variables, and to generate a fire 
occurrence probability map accordingly. This study aims to extend the knowledge about the distribution of 
bushfires and provide practical guidance for fire management actions at a broad landscape scale in South-
Eastern Australia.  

2. METHODOLOGY 

2.1. Study Area 

The study area covers the territory of New South 
Wales, Victoria and Australian Capital Territory, 
with an area of 1,050,000 km2 (Figure 1). Infrequent 
high-intensity summer–autumn fires occur in this 
area due to the winter–spring rainfall activities 
(Murphy et al., 2013). 

2.2. Data Description 

Fire occurrence, climate, vegetation, topography 
and anthropogenic data are collected and prepared 
for statistical analysis as listed in Table 1. 

Climate 
Climate data used in this study includes the mean annual precipitation, the mean January minimum 
temperature and the mean July maximum temperature. The January minimum temperature and the July 
maximum temperature are chosen because they maximise the spatial variability of temperature gradients 
(Syphard et al., 2008). The precipitation data for 2004-2013 and the temperature data for 2006-2013 are 
obtained from the Bureau of Meteorology. The mean January minimum temperature and the mean July 
maximum temperature are calculated by averaging yearly extreme values picked from the daily mean 
maximum and the daily mean minimum temperature raster layers. The mean annual precipitation is the mean 

Figure 1. Location of the study area 
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of the monthly total rainfall for the year. All the generated raster layers are resampled at a 1 km resolution 
using nearest neighbour technique.  

Table 1. Variables analysed in the regression models explaining fire occurrence in South-Eastern Australia 
Variable Source Description 

Climate 
Mean annual precipitation Bureau of Metrology
Mean January minimum temperature Bureau of Metrology
Mean July maximum temperature Bureau of Metrology

Vegetation 
CLUM land use  Department of Agriculture 6 primary classes 
MODIS land cover NASA 6 primary classes 
NDVI NASA
EVI NASA

Topography 
Elevation NASA
Slope NASA Derived from elevation grid 
Northwestness NASA Derived from elevation grid 

NW = con ( [aspect] == - 1 , 0 , cos ( ( [aspect] 
+ 45 ) * π / 180)) 

Distance to zero meso-scale elevation 
       residual contour 

NASA Derived from elevation grid 

Anthropogenic Data 
Distance to primary road OSM Mean Euclidean distance 
Distance to secondary road OSM Mean Euclidean distance 
Distance to railway OSM Mean Euclidean distance 
Population density ABS

Fire occurrence NASA Identified from MODIS active fire detections

Vegetation 
The catchment scale land use of Australia map (CLUM) is used in this study. It was updated in March 2014 
and is published by the Department of Agriculture. According to the Australian Land Use and Management 
(ALUM) Classification version 7, the CLUM data is categorised into 6 primary classes: (1) conservation, 
natural environments; (2) production from relatively natural environments; (3) production from dryland 
agriculture and plantations; (4) production from irrigated agriculture and plantations; (5) intensive uses; (6) 
water. The 50 m resolution dataset is resampled at a 1 km resolution using the majority algorithm. 

The MODIS 500 m Land Cover Type product (MCD12Q1) is also used in this study. The original 17 classes 
are grouped into 6 primary classes to take the influence of primary vegetation types on fire occurrence into 
account. The dataset of 2003 is chosen and resampled at a 1 km resolution using the majority algorithm. The 
Collection 5 MODIS global monthly Vegetation Index product (MYD13A3) with a spatial resolution of 1 km 
is utilised. Both Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) in 
January 2003 are generated. 

Topography 
Elevation, slope, aspect and distance to zero meso-scale elevation residual contour (McRae, 1992) are used 
in this study. The Global Digital Elevation Model Version 2 (GDEM V2) 30 m data obtained from the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is used as the elevation data. 
It is resampled at a 1 km resolution by calculating the mean of the cell values within each 1 km2 rectangular 
block. Slope and aspect variables are derived from the elevation data. To incorporate the variable aspect into 
linear statistics, a linear variable ‘northwestness’ is derived by the cosine transformation of the circular aspect 
variable. The variable distance to zero meso-scale elevation residual contour is generated by removing 
micro- and macro- scale variation of elevation, leaving only the meso-scale residual and generating contours 
accordingly (McRae, 1992).  

Anthropogenic Data 
The influence of the human activity on bushfire occurrence is quantified based on the network of roads and 
railways that make up the traffic system. The primary road, secondary road and railway information is 
derived from the database of OpenStreetMap (OSM).  The Euclidean distance to the nearest road or railway 
is calculated to generate 1 km resolution distance maps. The population density information in 2003 is also 
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incorporated. The 1 km resolution map is generated according to the estimated residential population of each 
Local Government Area (LGA) obtained from Australian Bureau of Statistics (ABS). 

Fire Occurrence 
The Collection 5 MODIS global monthly fire location product (MCD14ML) (Giglio et al., 2003) is used in 
this study. The MCD14ML dataset is a combination of level 2 MOD14 / MYD14 active fire products 
collected from the MODIS instrument on Terra and Aqua. The spatial resolution of this product is 1 km.  

Fire occurrence points are identified from the MODIS active fire detections using the Fire Spread 
Reconstruction approach (FSR) (Loboda & Csiszar, 2007). This method groups active fire points into 
burning events based on the spatial and 
temporal proximity between fire detections. 
The upper limits of spatial and temporal 
distance between two points are set at 4 km 
and 10 days, respectively. The number of 
active fire points within an individual group 
ranges from 1 to 13337 in this study. The 
earliest points within each group are 
selected to be the candidate ignition points. 
A given group may contain multiple 
candidate ignition points, but only the point 
with the smallest object ID is assumed to be 
the ignition point to minimize the influence 
of spatial and temporal autocorrelation. The 
identified 19668 ignition locations are used 
as fire occurrence points in the modelling 
process. 

CLUM Land use and MODIS land cover 
data are used to filter the fire occurrence 
points. Fire incidences that are located on 
intensive used areas (e.g. industrial and 
residential areas), waterbodies and barrens 
are removed to reduce the influence of 
commission error. The histogram of the 
monthly distribution of the remaining fire 
occurrence points (Figure 2) exhibits upper 
fluctuations in spring and autumn, which 
are associated with prescribed burning  and 
agricultural fires (e.g. stubble burning) , 
therefore only fire occurrence points within 
the typical fire danger season (November 
to February) are used in this study.  

In total there were 4110 fire occurrences 
during the fire seasons of 2003-2013 in the 
study area, which are utlised in the 
modelling process. The locations of these 
events are shown in Figure 3. 

2.3. Modelling approach 

To estimate the probability of fire occurrence, a logistic regression model was developed. Let ܲ  be the 
probability of a fire occurrence in a cell ݅, and ݔ be the value of the ݆th covariate in the cell ݅, then the 
logistic regression model is defined as: 

ܲ = exp(ߚ + ଵݔଵߚ + ଶݔଶߚ + ⋯+ (ݔߚ (1 + exp(ߚ + ଵݔଵߚ + ଶݔଶߚ + ⋯+ ⁄((ݔߚ         

where ߚ  is an intercept and ߚଵ ଶߚ , ߚ ...,  are coefficients (model parameters). To reduce the size of the 
dataset being analysed, we randomly selected 16,315 control points from the non-fire locations. The ratio of 
ones (ignitions) to zeros (sampled non-ignitions) is 1:3.97. The sampling rate, π, is approximately 0.016. The 

  Figure 2. Monthly distribution of fire ignitions in South-
Eastern Australia from 2003 to 2013 

 

Figure 3. Fires occurrence points during 11 fire seasons  
of 2003-2013 in South-Eastern Australia 
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probability of fire occurrence was calculated by incorporating an offset term, −݈(ߨ)݃, following the method 
demonstrated by Preisler et al. (2004). 

Spearman’s rank correlation was used to compare the correlations among continuous explanatory variables to 
avoid multicollinearity. NDVI, EVI, January maximum temperature, July minimum temperature, elevation, 
slope and population density were removed because their correlations with other explanatory variables are 
above 0.6 (Wintle et al., 2005). The association between categorical variables (CLUM land use and MODIS 
land cover) was calculated using Pearson’s Chi-Squared test. CLUM land use was removed because high 
association (P ≤ 0.001) was found. To evaluate the influence of each explanatory variable on the probability 
of fire incidence, we developed univariate logistic regression models. The performance of square or log 
transformed continuous variables were also tested. Dummy variables were created for the MODIS land 
cover, with a reference class (intercept) of the forests; the coefficients of other classes are relative to the 
value of the intercept. We also calculated the 95% confidence interval for each variable using profiled log-
likelihood function. Our final model was chosen using a backwards stepwise algorithm based on the Akaike 
Information Criterion (AIC) (Venables & Ripley, 1999). The receiver operating characteristics (ROC) curves 
of all the univariate models and the final model were computed to evaluate their performance in fire 
occurrence prediction. The area under the curve (AUC) of the ROC curve was used to measure the model fit 
(0.9-1: excellent, 0.8-0.9: good, 0.7-0.8: fair, 0.6-0.7: poor, 0.5-0.6: fail) (Swets, 1988). Significance of each 
explanatory variable was determined using the likelihood ratio test. 

All the statistical analyses were computed using the R package version 3.1.1 (R Development Core Team, 
2014). Logistic regressions were fitted using generalized linear models (GLMs). ROCs were calculated with 
the R module pROC (Robin et al., 2011). 

3. RESULTS 

According to the results of univariate logistic regression analysis, all of the continuous explanatory variables 
except ‘northwestness’ are found to be significant (P ≤ 0.05) (Table 2). Fire occurrence is positively related 
to the mean annual precipitation. The distance to zero meso-scale elevation residual contour positively affects 
bushfire ignition. All the anthropogenic variables representing distances to human facilities are negatively 
related to fire occurrence, which suggests that bushfires are more likely to occur in the areas close to human 
activities.  

The overall P-value of MODIS land cover indicates that it is significant in predicting fire occurrence as a 
whole (Table 2). Although the contrasts of savannas and permanent wetlands with the reference class 
(forests) are not significant, the smallest lower 95% confidence limit value of the two classes is -0.07, less 
than zero and greater than the upper limits of all the remaining classes. Therefore, forests, savannas and 
permanent wetlands are equally the most fire-prone. The sample size within the class of permanent wetland is 
7, which leads to a wide confidence interval. There is significant evidence that grasslands are moderately 
susceptible to fire, with shrublands and croplands the least likely to ignite. 

Table 2. Univariate regression results for variables explaining bushfire occurrence in South-Eastern Australia 

Variable Coefficient Standard 
Error P-value 

95% Confidence Interval 
Lower Bound Upper Bound 

Climate     
Mean annual precipitation 0.001670 0.000050 <0.0001 0.001573 0.001768 

MODIS land cover   <0.0001   
Forests (Intercept) -0.836074 0.038641 <0.0001 -0.912198 -0.760708 
Shrublands -0.897672 0.049979 <0.0001 -0.995594 -0.799660 
Savannas 0.029822 0.055991 0.5943 -0.079961 0.139542 
Grasslands -0.576073 0.073764 <0.0001 -0.721701 -0.432474 
Permanent wetlands 1.123756 0.764739 0.1417 -0.390200 2.750080 
Croplands -0.848992 0.054908 <0.0001 -0.956773 -0.741514 

Topography      
Northwestness -0.023449 0.024736 0.3366 -0.071261 0.024403 
Distance to zero meso-scale elevation residual 

contour -0.000022 0.000007 0.0010 -0.000035 -0.000009 

Anthropogenic variables      
Distance to primary road -0.000008 0.000001 <0.0001 -0.000010 -0.000007 
Distance to secondary road -0.000014 0.000001 <0.0001 -0.000016 -0.000011 
Distance to railway -0.000008 0.000000 <0.0001 -0.000009 -0.000007 
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The equation that has the smallest AIC value is 
selected to be the final model. It includes five 
explanatory variables: mean annual precipitation, 
MODIS land cover, distance to zero meso-scale 
elevation residual contour, distance to secondary 
road and distance to railway (Table 3). The AUC of 
the final model is 0.71. Although the prediction 
power of our model is not perfect, we still obtain 
useful information from the modelling result. A fire 
occurrence probability map is generated by 
applying the coefficients of the final model to raster 
layers corresponding to the explanatory variables 
(Figure 4).  

 

Figure 4. Predicted probability of bushfire occurrence in South-Eastern Australia 

4. DISCUSSION 

As is anticipated, bushfires in the study area are significantly influenced by both environmental and 
anthropogenic variables. The mean annual precipitation positively influences the fire incidence in our model. 
Although at a small scale, rain increases the moisture contents of both dead and live fuels, reducing the dry 
fuels available to burn, and consequently affecting fire danger; it is not the case at a broad scale. In the study 
area, the semi-arid regions in Australia’s continental interior lack the fuels necessary for a fire to start while 
the coastal regions with abundant rain provide ample fuels for fire ignition. 

Fire probabilities are different regarding various land cover types. Forests are most likely to burn because 
they are covered by heavy fuel loads. Savannas are equivalently fire-prone because they are fundamentally 
easy to ignite (Murphy et al., 2013). It is out of expectation that permanent wetlands are also most susceptible 
to fire. It may be due to the impact of climate change and urban expansion on the coastal fringe where 
wetlands are located (Schneider & Sutherland, undated). Shrublands are less fire-prone possibly because of 
the low-level shrub canopy cover (<60%) in this area. 

Fires tend to distribute in areas near the zero meso-scale elevation residual contour. This finding is consistent 
with McRae (1992)’s finding about natural ignitions in the ACT area. This unobvious pattern is able to 
provide practical information to fire risk mapping. Although human-caused fires are not analysed specifically 
in this study, fires are still found in areas near human infrastructures because fire ignitions are strongly 
affected by human activities (Vilar et al., 2010).  

Table 3. Variables retained in the final model 
explaining bushfire occurrence in South-Eastern 
Australia 

Variable Degree of 
Freedom P-value 

Mean annual precipitation 1 <0.0001 

MODIS land cover 5 <0.0001 
Distance to zero meso-scale 
elevation residual 1 <0.0001 

Distance to secondary road 1 <0.0001 

Distance to railway 1 0.0003 
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5. CONCLUSION 

In this paper, we incorporated climate, land cover, topographic and anthropogenic information into logistic 
regressions to study the distribution of fire occurrence in South-Eastern Australia over the period 2003-2013. 
From the information provided by the modelling results and the fire probability map, bushfires in the study 
area mostly occurred in coastal and mountainous areas close to human infrastructures and zero meso-scale 
elevation residual contours, as well as on permanent wetlands, savannas and forests, while they rarely 
occurred inland. The results extend knowledge about the influence of environmental and anthropogenic 
conditions on bushfire incidence and the spatial pattern of bushfire in the NSW, VIC and ACT areas, which 
can help fire agencies in these three jurisdictions better target their management activities. 
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