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Abstract: We propose a framework for Uncertainty Evaluation, UE, to explore how the components of a 
crop model contribute to overall model output uncertainty.  We develop a state-space structure to classify the 
types of uncertainty introduced by each model component.  The state-space structure, 

( , , , , )t t tr f ε= θZ E C , predicts the real world r as a function f of state variables tZ , input parameters θ, 

calibration and environmental data tC and tE and noise ε.   

Bio-physical agricultural models, colloquially crop models, are simplified mathematical representations of 
physiological and physical processes. Such deterministic models are made up of many components that 
together simulate real-world agricultural systems.  Although the models are deterministic, there are many 
possible sources of uncertainty; incorrect specification of the governing equations, incorrect input 
parameters, bias, scaling, aggregation, and inherent stochasticity in data. 

Our UE framework has seven steps to provide guidelines for the identification and utilisation of the 
uncertainty inherent in different aspects of crop models. We illustrate the UE framework using the SIRIUS 
model as a case study for simulating spring-wheat development. In this paper we combine the three aspects; 
different types of uncertainty, use of state space structure to describe a time-step model; and a framework for 
UE.  This allows us to explicitly describe and allocate each type of uncertainty within a state-space structure 
and then curate available information prior to diagnosing principal sources of uncertainty and setting or 
adjusting analysis objectives in the light of actions. It consists of seven steps that sequentially: 1. Describe, 
validate and verify the model, 2. Clearly identify and compartmentalise model components, 3. Curate 
available information, 4. Identify principal sources on uncertainty in model components, 5. State the 
objectives of the evaluation, 6. Generate simulation data and 7. Analyse the simulation data.  Our framework 
can link qualitative UE to quantitative analysis by classifying some classical and modern techniques for 
generating and analysing data from crop models. The UE framework is illustrated via a case study for 
simulating spring-wheat development with the SIRIUS model.   
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1. INTRODUCTION 

Bio-physical agricultural models, colloquially crop models, are used to inform and support farm-level 
decision making, agronomic research, breeding strategies and government policy (Rosenzweig et al. 2013). 
Such models are simplified deterministic representations of physiological and physical processes, and have 
many components that work together to simulate real-world agricultural systems. There is been increasing 
recognition that the impact of uncertainty on crop model results needs to be considered (Rotter et al. 2011; 
Wallach et al. 2014).  The development of methods to evaluate uncertainty in deterministic models is an 
active area of research and many approaches have been proposed, including multi-model ensembles, 
sensitivity analysis, and emulators (Asseng et al. 2013; Teixeira et al. 2015).  There are many excellent 
resources that discuss and describe the different types of uncertainty (Saltelli et al. 2000; Kurowicka and 
Cooke 2006; O'Hagan 2006; Wallach et al. 2014). Others describe the conceptualization of time-step models 
in a state-space structure (Gordon et al. 1993; Cressie and Wikle 2011).  Others again put forward plans and 
frameworks for uncertainty evaluation (UE) (Refsgaard et al. 2006; Refsgaard et al. 2007; Uusitalo et al. 
2015).  However, none combine the three aspects to explicitly describe and allocate each type of uncertainty 
within a state-space structure and then curate available information prior to diagnosing principal sources of 
uncertainty and setting or adjusting analysis objectives in the light of actions.  We propose a framework to 
facilitate model UE and we link our qualitative UE to quantitative analysis by classifying some classical and 
modern techniques for generating and analysing data from crop models. 

2. CASE STUDY: THE WHEAT DEVELOPMENT MODEL SIRIUS. 

We will illustrate our methodology using the spring wheat sub-model of the crop model SIRIUS (Jamieson et 
al. 1998).  SIRIUS is a dynamic, deterministic computer simulation model for the development of a plant 
through time as realised by the number of fully extended leaves.  It has a discrete nature such that on each 
day there is a well-defined set of states by which each state variable may either remain in its current state or 
update according to environmental cues.  SIRIUS simulates the plant’s development based on mean daily 

environmental information.  State variables tZ  are used to predict the (observable = LNt) state variable leaf 

number (lnt) on day t based on calculations that simulate the rate of leaf development (phyllochront), the 
number of organs (primordiat) and the possible final number of leaves, given daylength and developmental  
progress (flntt,  flnt).  t = 1 is the day of sowing. The simulations depend on input parameters θ that describe 
cultivar-specific characteristics and responses to environmental signals, and observable environmental 

information tE , where TT = mean daily thermal time and PP = daily photoperiod.    He et al. (2012) describe 

how the model components which integrate the effects of thermal time and photoperiod to express vegetative 
development  are implemented in equations (1 - 5).  Model components are described next.  

 
t
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 *tphyllochron r bp=   (2) 

where, 0.75 if 2, 1 if 2 8, 1.3 if 8
t t t

r ln ln ln= ≤ < ≤ ≤   

and bp is a cultivar-specific value for baseline phyllochron (the rate at 2-8 leaves). 

 (( )* )t tfln = lmin ps ppsat PP s+ −   (3) 

where 1 if , 0 otherwise
t

s PP ppsat= ≤  

and ps and ppsat are cultivar-specific values for rate of growth in response to photoperiod, and the 
photoperiod at which full response occurs. 

 *tprimordia pe pn= + tln   (4) 

where pe is the number of primordia in the grain at sowing and pn is the number of primordia present in the 
meristem on per leaf basis.  
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3. FOUNDATION: A STATE-SPACE STRUCTURE FOR A CROP MODEL 

3.1. Rationalisation of State Space Structure 

Crop models often update through time whilst responding to environmental information such as weather or 
nutrient management input.  Most are process based, and update at some discrete time-unit (e.g. hourly, daily, 
weekly).   It is natural to adopt a state-space framework to describe the model structure.  In Section 2.2 we 
follow the notation of authors such as Gordon et al. (1993) and Cressie and Wikle (2011).   

3.2. Components of a Crop Model 

Input parameters 
The input parameter θ represents information that does not change during the sequential updating process., 
e.g. soil type or cultivar in a crop model. 

State equations and State variables 
The equations linking the state variables tZ at time step t jointly define the processes that make up the model 

given the input parameters θ and the input data..  The state equations describe the underlying scientific 
processes of the model.  They are distinct from the input parameters. The model outputs are then a function f 
of all the model components.  

Observation data 

The observed data are denoted ( )T=t t tD C E .  Observation data may be present at each time point t, 

only at selected time points, or on some more or less precise scale. tC  represents response or calibration 

data, possibly for multiple variables and/or scenarios. It could also be available only as a single C, e.g. yield 

at the end of the simulation process.  As defined here tC , is distinct from the data used to construct the state 

equations or to validate the model during the model building stage.  Rather, they either act within the 
modelling process itself upon the estimated real, unknown target quantity r, for example during data 
assimilation, or are used as an independent validation data set during model assessment (Section 4.1). The 
construction/validation data used during model building are not considered beyond their indirect contribution 

to tZ and the validated model. tE  represents updating environmental or managerial inputs such as 

rainfall/irrigation or temperature.  

3.3. Model Notation 

A generic model can be formally represented as the functional relationship (O'Hagan 2006):  

 ( )y f x=   (6) 

where x is a vector of inputs and y a vector of outputs.  The model structure ( )f • specifies how the 

characteristics of y are determined by those of x. Equations (7 - 10) build on (6) to formally 
compartmentalise the model components.  Strong (2012)  identified an extra discrepancy term δ as a linear, 
additive term to quantify the effect of model error on the model’s ability to predict the real, unknown target 
quantity : ( )r r f x δ= + . We extend this to include instead a more general term ξ not assuming either 

linearity or additivity, to encompass any form of uncertainty that cannot be otherwise allocated. We define:  

 ( , )r f x ξ=   (7) 

The inputs of the model x have been defined as either input parameters θ or input environmental data tE : 

 ( , , )tr f ξ= θ E   (8) 

The form of the model f used in (6) - (8) includes state equations tZ  and their interactions.  Thus we can 

further refine (8): 

 ( , , , )t tr f ξ= θZ E   (9) 
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We further decompose ξ  to allow for the uncertainty associated with calibration data tC separately from the 

remaining, unidentified uncertainty ε:  

 ( , , , , )t t tr f ε= θZ E C   (10) 

Next we describe sources of uncertainty in models, and allocate them to one of the components of (10).  

3.4. Types and sources of uncertainty and their allocation to model components 

Although computer simulation models represent detailed scientific understanding of real-world systems they 
are simplifications of reality and hence imperfect.  Imperfections may arise due to either epistemic or 
aleatory sources of uncertainty as discussed in light of model components next.    

Epistemic uncertainty is a potential deficiency in the model that is due to a lack of knowledge.  It may also 
arise from assumptions introduced in the derivation of the mathematical model used or simplifications related 
to the correlation or dependence between physical processes.  

Input parameter uncertainty ( , , , , )t t t ε=r f Z E Cθ  is also known as ‘state of the world’ 

uncertainty.  It refers to uncertainty about the appropriate values to describe the scenario to be modelled.  

Data uncertainty ( , , , , )t tt ε= E Cr f Z θ , both from environmental input and calibration, may 

enter because of bias or scaling/aggregation, imperfectly measured observations, inherent stochasticity or, in 
the case of environmental input data, because of incorrect specification in the model.  Scaling/aggregation 
uncertainty refers to situations in which the model is used on a scale different from that on which it was 
developed to operate.  

Structural uncertainty, ( , , , , )t tt ε=r E Cf Z θ , is also known as model inadequacy and refers to 

discrepancies between the structure of the model relative and  the processes it represents.  This may be in the 

nature of the state equations ( , , , , )tt t ε=r f E CZ θ , or the more inclusive f which describes how the 

model components fit together. The obvious sign of structural uncertainty is the difference between the value 
of the real-world process, and the model outputs at the true values of the input data and parameters. 

Aleatory uncertainty: Aleatory uncertainty ( , , , , )t t t ε=r f Z E Cθ
 

is usually thought of as intrinsic, 

random variation of a real world process even when the conditions are fully specified.  The true process r is 
then defined as the mean value averaged over this intrinsic variation.  It will only be able to be quantified as 
an aspect of the residual uncertainty in observed calibration data.  

4. A FRAMEWORK FOR UE 

4.1. The life of a model 

A model’s life is a sequence of phases starting with conceptualisation and 
implementation in code (Model Building), followed by testing (Model Assessment), 
and use (Model Application).  However, adjustments can be made at any phase as 
understanding of the system changes. Explicit identification of the model phase 
during UE is necessary when defining the objective of the UE to help to identify the 
most appropriate techniques.   Our UE framework is primarily aimed at enriching the 
Model Assessment and Application phases.  

4.2. Outline of a robust UE 

The most appropriate choice of sampling and analysis techniques depends on 
available resources, and the objectives of the UE. Figure 1 outlines seven steps which 
can help ensure a robust UE.  Figure 1 has some likeness to the conceptual model put 
forward in Figure 3 of Refsgaard et al. (2006).  The UE framework will be expanded 
upon and illustrated using SIRIUS. 

 

  

1. Model building, 
verification and 

validation

2. Identify model 
components

5. State uncertainty 
evalution objectives

6. Generate simulated 
data

7. Analyse/Summarise

4. Identify principal 
sources of uncertainty

3. Curate available 
information

Figure 1. Seven steps for model UE. 
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4.3. Carry out the UE  

Step 1 - Build, verify and validate the model: As with any modelling exercise, building a computer 
simulation model begins with observations, from which hypotheses are derived, and then implemented in 
code.  The joint processes of building, verifying and validating models are well documented and are not 
discussed further.  

Step 2 - Identify model components: Each component of a crop model can be formulated to fit into the state-
space structure described in Section 2.  Table 1 provides a tableau into which each component can be 
assigned, illustrated for our case study.   

Step 3 - Curate available information:  Data, expert opinion, the phase of the model’s life, components, 
sources of uncertainty and other relevant information is usually able to be identified about a model.  For 
example, for SIRIUS, information is found in the literature, and data and expert knowledge can be accessed 
through research organisations in New Zealand.  Selected information known about SIRIUS is collected in 
Table 2.  If the model is too large to enable this process easily, a first step should be to identify which sub-
component of the model structure is to be evaluated.   

Step 4 - Identify principal sources of uncertainty in the model: Given the components identified in Steps 2 
and 3, assess which sources of information are likely to be of key importance.  These include model 
structural error, incorrectly specified input parameters, bias in environmental data, and inherent stochasticity.  
The most important problems can then be identified.                    

Table 1. Classification of model components filled in for the SIRIUS wheat model as defined above.   

 

Table 2. Information matrix adjusted from (Refsgaard et al. 2007) filled in for the SIRIUS wheat model.

 

Step 5 - State objectives of evaluation: UE does not occur in a vacuum, and neither can it be generalised.   
Rather, it is a tailored exploration that will be specific not only to the model but also to the 
environment/scenario(s) for which it is to be used (Wallach et al. 2014). The key is to state clearly the 
objective of the analysis, whilst accounting for the information and resources available, as summarised in 
Tables 1-2. A selection of techniques will probably be helpful and should be combined to provide a heuristic 
view of the model.  The most insightful techniques will vary depending on the phase of the model’s life that 
is under study and on the properties of that specific model.  The objectives of the UE could comprise one or 
more of the following:  

1. Assess the size and direction of bias of model-simulated values for fln for a new location, potentially to 

guide new research/calibration efforts ( , , , )t t tε=r E Cf Z θ . 

Calibration Variable Environmental Variable Model Form State Equation

r = f(Z t, θ, Et,  Ct, ε) r = f(Z t, θ, Et,  Ct, ε) r = f(Z t, θ, Et,  Ct, ε) r = f ( Zt, θ, Et,  Ct, ε) r = f( Zt, θ, Et,  Ct, ε)
ps LNt PPt phyllochron t

ppsat TTt primordia t

lmin flnt t

pn fln t

pe ln t

bp

Input Parameter Observation Variable Structural Uncertainty

the way in which 
model components 
interact at each time 
step

Context Notation Data Expert opinion Other 

Structural uncertainy r = f ( Z t , θ, E t , C t , ε)
The developmental phase between 
imbibation and emergence may not be  
correctly specified.

Simulated Data for wheat 
grown in Southland 
consistently underestimates 
time of anthesis

Data from the literature (Jamieson et al. 
2008) the rate of wheat development (bp ) 
is widely variable between cultivars.

unknown

Expert opinion on range values for several 
cultivars: bp 90-110; lmin 5-9; ps 0.01-0.7

Measured day of flag in southland crops for 
one cultivar.

unknown unknown

Measured observations of LN at weekly 
intervals for controlled climate conditions.

Measured weather station data in
Lincoln, Canterbury, New Zealand from 
1960 - present

Scaling, aggregation, 
sampling or aleatory 
sources of uncertainty

r = f(Z t , θ, E t , C t , ε )

r = f(Z t , θ , E t , C t , ε)Model Inputs
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2. Carry out a sensitivity analysis to assess whether the model is also (as the literature suggests the real 

world is) sensitive to changes in bp ( , , , , )t t t ε=r f Z E Cθ . 

3. Carry out a sensitivity analysis to assess the impact (in number of days of error in day of flag leaf 

estimation) of spatial bias in thermal time (TT) input data ( , , , , )tt t ε=r f Z CEθ . 

4. Fit a data assimilation model to explore whether the model correctly simulates the development of each 

leaf through time ( , , , , )t t t ε= θ Cr f Z E . 

Step 6 - Generate simulation 
data: about how the model 
responds to complex 
combinations of inputs.  It is not 
synonymous with real-world, 
observed data.  Simulation data 
can be used either to explore

( , , , , )t t t ε=y Cf Z Eθ  

(sensitivity analysis) or 

( , , , , )t t t ε= Cr f Z Eθ  

(calibration). The difference lies  

                    Figure 2. Classification of data generation techniques. 

in whether there are real-world data tC  is available to provide information about r and ε. The technique used 

to generate data will influence the direction of the analysis toward evaluating uncertainty due either to input 
parameters, environmental inputs, or to structural uncertainty.  A selection of sampling techniques to 
facilitate exploration of structural or input parameter/environmental data uncertainty is shown in Figure 2.  
Simulated data arising from any of these data generation techniques could be used for most of the analysis 
techniques shown in Figure 3.  For the case study, we focus on objective 2).  We will carry out a sensitivity 
analysis to explore the importance of incorrectly specifying the base phyllochron of a wheat cultivar in the 
model, in comparison to other input parameter and environmental input variables.  The model output was 
 Table 3. Input Vector.                                 sampled using a complete factorial design over a selection of years 

and sowing date combinations.  Non-linearity in responses may be 
explored via experimental data and model outputs.  This does not 
allow for probabilistic information to be included.  The ranges of 
values for input weather information and input parameters ps, lmin 
and bp are recorded with the rest of the information in Table 2.  This 
information is used to develop a simple factorial design to use as an 
input vector for a set of model simulations shown in Table 3. 

Step 7 - Analyse/Summarise 
data: Once the simulation data 
have been generated, analysis and 
summary of the information can 
begin.  Depending on the 
objectives defined in step 5, the 
data will be analysed either to 
identify areas in need of further 
research (Model Assessment), or 
to predict/smooth with confidence 

Figure 3. Analysis and summary techniques with and without observed data. 

ranges representing the desired sources of information (Model Application).  Figure 3 shows a classification 
analysis techniques based on real-world observation data (calibration) or not (sensitivity analysis). Graphical 
methods should always be a part of UE.  The data resulting from the factorial design implemented in step 6 is 
trivial to analyse.  We use sums of squares from ANOVA decompositions to give the first order sensitivity 
index for the main factor effects (Si).  The total sensitivity index (Ti) is calculated by adding the interaction 
component to each main factor (Saltelli et al. 2000) to show the relative contribution of each term to the 
overall variation in model outputs (Figure 4).  After the effects of weather have been accounted for, bp 
accounts for the largest source of variation in model outputs.  Improving information about the phyllochron 
in most varieties is likely to affect the ability of SIRIUS to accurately simulate spring wheat development. 

1 2 3 4
Year 1980 1990 2000
Day 10 69 160 252
lmin 5 9
bp 90 130
ps 0.01 0.07
Factorial

Term Levels

=3*4*2*2*2 96 observations

Internal 
Discrepancy 
Approaches

Mixed Model 
Ensembles

Stochastic
Transition 
Matrices

Simple random 
or Monte Carlo 

samples

Factorial
Design

Emulators

Input 
Parameter/Environmental 

Variable  Uncertainty
y = f(Zt, θ, Et, Ct, ε)

Structural 
Uncertainty

y = f(Zt, θ, Et, Ct, ε)

Generate 
Simulation 

Data

Analysis/
Summary

Sensitivity Analysis
y = f(Zt, θ, Et, Ct, ε)

Section 5.2

Calibration
r = f(Zt, θ, Et, Ct, ε)

Section 5.1

Formal 
statistical 

methods for 
normal data

Non-Normal
data

(GLUE)

Data 
Assimilation

ANOVA
decomposition

Multivariate 
Statistics

Correlation 
approaches

Graphical 
methods
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Figure 4. Si + remainder (interactions) and Ti  

5. CONCLUSIONS 

Understanding the effect of uncertainty on the outputs of 
models is highly topical in the crop modelling literature.  This 
paper proposes a framework to help researchers quickly 
identify an appropriate method for the uncertainty 
quantification goal at hand.  Based on a state-space structure, 
tools to help to curate information, to diagnose the most 
important sources of uncertainty, and to identify uncertainty 
evaluation objectives have been developed.  It then provides 
guidelines for the identification of approaches to explore 
uncertainty.   
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