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Abstract: A form of agent-based modelling known as individual-based modelling has been used widely to 
simulate hypothesised mechanisms underlying processes in the real world, especially in the field of 
behavioural ecology. To apply this approach to insect-plant interactions the Queensland fruit fly (Qfly), 
Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a major native insect pest of horticulture in Australia, 
will be examined. Due to restriction on use of some chemicals, currently there is no suitable management 
system for control of Qfly. However, better Qfly management can be potentially advanced by targeted 
behavioural, physiological and ecological research on this species. Many control options depend on 
behavioural fundamentals of Qfly such as foraging and movement patterns (e.g. trapping control technique), 
and the use of resources like protein and food sources (e.g. bait spray control technique).  

In the present study, two 3-dimensional individual-based models with different levels of detail have been 
developed to simulate Qfly behaviour and movement patterns on host plants, one with NetLogo, and the 
other with L-studio. Both provide a dynamic platform for simulating insect movement decisions underlying 
searching and feeding behaviour. The spatial unit in the NetLogo model is based on ‘vegetation cubes’, while 
the Lindenmayer System (L-System) formalism-based approach underlying L-studio allows the model to 
have more detailed plant architecture, with individual leaves and stem segments. Both models predict that 
Qflies spend more time in the mid to upper canopy, which shows a good agreement with published literature. 
The overall objective is to test whether it is possible to predict fruit fly movement and distribution based on 
hypothesized behaviour and also assess whether such a model can provide insights that may have been 
missed in past experimental studies, investigate what level of detail is best used for addressing different types 
of questions from entomologists, and to show the advantages and disadvantages of both models. 

Our study suggests that, the NetLogo model can be better used to investigate scientific questions like insect 
spatial population distribution on plant canopies and how different tree architectures affect their behaviour, 
while the L-system model is better to use to look at how foliage density and foliage position affect fruit flies 
behaviour and to simulate landscape scales such as orchards including multiple trees. Using the model with 
the right level of detail to inform, develop and test research allows new insights into insect-plant interactions 
and can inform experiments carried out in the field that have application in better pest management. 

Keywords: Agent-based model, computational model, computer simulation, behavioural ecology, insect-
plant interactions
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1. INTRODUCTION 

Computational modelling is playing an increasingly significant role in understanding complex biological 
behaviours (Fisher and Henzinger, 2007). Biological scientists are finding that computational models, used to 
simulate hypothesised mechanisms underlying processes in the real world, can be of great value in 
understanding the systems they study (Di Ventura et al., 2006). In biology or ecology, computer simulations can 
create a virtual environment (in silico) and provide an alternative or a valuable supplement to in vitro or in vivo 
experiments (Hanan et al., 2002; Karr et al., 2012; Martin et al., 2013) with great potential for scientists to 
benefit if they consider using such models to inform, develop and test their research (Peck, 2004). Agent-based 
models that use simple rules to simulate individual behaviour, the interactions among and between individuals, 
and the interactions between individuals and their abiotic environment are known as  individual-based models or 
IBM (Grimm and Railsback, 2005) in behavioural ecology and have been applied widely (Dyer et al., 2014; 
Guttal et al., 2012; Pe'er et al., 2013; Zurell et al., 2014). To explore the capacity of computational modelling to 
generate new perspectives in insect-plant interactions, the Queensland fruit fly (Qfly), Bactrocera tryoni 
(Froggatt) (Diptera: Tephritidae), with its host plants, provides a suitable target system for modelling. Because 
Qfly is a major insect pest of horticulture in Australia, and management is currently in flux (Clarke et al., 2011), 
development of such a model is timely. Additional insight into the behaviour of this pest could translate into 
applied outcomes. 

Clarke et al. (2011) claim that better Qfly management can be advanced by targeted behavioural, physiological 
and ecological research on this species. Current options are based on the fundamental behaviours of Qfly such 
as foraging, movement patterns (e.g. trapping control technique), and the use of resources like protein and food 
sources (e.g. bait spray control technique) (Balagawi et al., 2012; Clarke et al., 2011). According to Clarke et al. 
(2011), trapping (lure and kill techniques) could become a more important management strategy now that some 
chemicals are restricted. However, the application of such a technique requires a better understanding of the way 
Qfly forage in plant canopies, because traps need to be placed at a proper position within or around tree 
canopies in order to maximise catch efficiency (Balagawi et al., 2012). A study conducted by Raghu et al. 
(2004) showed that host plant structure and microclimate can have significant effects on the abundance and 
behaviour of a related species, wild tobacco fruit fly, Bactrocera cacuminata (Hering) (Diptera: Tephritidae). 
For Qfly, Balagawi et al. (2012) and Balagawi et al. (2014) argued that traits of plant architecture can influence 
insect interactions with their host plants: most Qflies have been caught in the mid to upper canopy on fruiting 
plants. Several other species of tephritid, the apple maggot fly, Rhagoletis pomonella (Walsh) (Casas and Aluja, 
1997), the Mexican fruit fly, Anastrepha ludens (Loew) (Robacker et al., 1990), and the Mediterranean fruit fly, 
Ceratitis capitata (Wiedemann) (Holbrook and Fujimoto, 1969), have also been found to have a different 
abundance at specific canopy heights, behaving in similar ways. Insect distribution within the canopy could 
follow a common pattern for frugivorous fruit flies (Balagawi et al., 2012). Therefore they provide a useful 
focus for modelling. 

Although there is evidence showing a significant relationship between host plant architectural characteristics 
and behaviour of fruit flies, the fundamental scientific questions of how fruit flies optimise their search patterns 
and limit competition through movement choices and how these movement patterns are affected by plant 
architecture are still not well understood. There is evidence that underlying rules for generating insect 
movement behaviour patterns in plant canopies may be simple and generic, based largely on plant architecture 
and some simple insect behavioural rules (Cribb et al., 2010; Perkins et al., 2010; Perkins et al., 2008; Perkins et 
al., 2009). If we hypothesize that spatial patterns of insect populations in plant architecture emerge from 
behaviour of individual insects, IBM can then be used to better simulate the studied system (Vinatier et al., 
2011). Thus, IBM will be the approach taken in the current study. The overall objective is to test whether it is 
possible to predict fruit fly movement and distribution based on hypothesized behaviour and also assess whether 
such a model can provide insights that may have been missed in past experimental studies, to investigate what 
level of detail is best used for addressing different types of questions from entomologists, and to show the 
advantages and disadvantages of both models. 

2. MATERIALS AND METHODS 

2.1. Model Design 

In the present study, two 3D individual-based models with different levels of detail have been developed to 
simulate Qfly (Bactrocera tryoni) behaviours and movement patterns on host plants, one with NetLogo 
(Wilensky, 1999), and the other with L-studio (Karwowski and Prusinkiewicz, 2004; Prusinkiewicz et al., 
2000). Each model contains wild female Qflies and a Valencia orange tree with 600 leaves, in order to be 
consistent with the experiments conducted by Dalby-Ball and Meats (2000). The average leaf area of Valencia 
orange trees is around 20 cm2 (Yuan et al., 2005). Qflies are assumed to search for a target (e.g. a host fruit) in 
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models (i.e. normal behavior for egg-laying females). The 
tree is 1m in height and the width of tree is 1.5 m. Both 
models used Qfly behavioural data described in the 
literature (Dalby-Ball and Meats, 2000). Rules applied to the 
individual fly were as follows: 

• The fly predominantly moves upward by short hops (a 
limited distance movement between leaves), and moves 
back into the centre if it is within the edge of the canopy. 

• A short hop ends with the fly finding the nearest leaf in a 
previously selected random direction. 

Qflies are aware of the nearby leaves within a specified 
range. Sensory range for leaves is composed of two modifiable parameters, the detection radius and sensing 
angle. In this study, we used 80 cm and 220 degree as detection radius and sensing angle for the sensing sphere 
(Figure 1). The reason for using these values is that: 

• The distance threshold of the sphere of attraction for the apple maggot fly, Rhagoletis pomonella (Walsh), is 
around 80 cm in an apple tree canopy (Verdeny‐Vilalta et al., 2014). No experimental data are currently 
available on this topic for Qfly. Since Qfly and apple maggot fly are from the same family, and demonstrate 
similar behaviours, for these modelling experiments it is assumed that they have somewhat similar distance 
thresholds for the sensing sphere. 

• To model up and downward movement choices, 220 degrees was chosen in order to facilitate observations 
that Qflies predominantly move upward (Dalby-Ball and Meats, 2000), but still allow for the possibility of a 
downward move.  

The system algorithm applied to both models is shown in Figure 2. At the beginning of the simulation, a tree is 
created and female Qflies are randomly located in the lower third part of tree. In each 1 minute time step, if 
there are any leaves within the sensing sphere, the Qfly will move to the nearest leaf in a randomly selected 
direction. If no leaves are present, the Qfly will hop randomly and then find the nearest leaf on which to land. 
The number of visits to a leaf will be incremented when a fruit fly arrives. The simulation will stop at 15 
minutes. Each movement (resulting in a visit) has been set to an equivalent of 1 min, because the mean time 
spent by individual wild Qfly observed by Dalby-Ball and Meats (2000) was about 1 min on a leaf. Therefore, 
the total number of visits in each region will be the total time spent in that region, in minutes.  

The number of visits to each leaf and movement trails among leaves can be displayed either numerically or 
visually in models. As a result, the movement patterns and population distributions will emerge from the 
behaviours of individual fruit flies. This kind of display 
provides output for comparisons between runs of the model 
using different parameter settings for testing, understanding 
and analysing Qfly movement patterns.  

2.2. Model Description 

NetLogo Model 

The entities in the NetLogo model are wild female Qflies 
and the spatial units of the tree and ground represented as 
cubes (patches in NetLogo terminology). One unit distance 
in the model is equal to 4 cm in reality. We assume that a 
green vegetation cube represents two leaves with the 
average leaf area around 20 cm2. The extent of the model 
world is 64 × 64 × 50 cubes. The tree has a closed-canopy 
(cylinder volume – height: 1 m and width: 1.5 m) 
containing 300 green vegetation cubes (equivalent to 600 
leaves in reality). The foliage density of the closed-canopy 
is approximately 340 leaves per cubic meter. The canopy is 
considered to consist of lower, middle and upper parts, each 
approximately one-third the height of the canopy containing 
100 green vegetation cubes. Figure 3 visualises the NetLogo 
model world and a simulation of individual fly movement 
through a closed-canopy.   

Figure 1. The 2D representation of sensing 
sphere for individual fruit fly with 80 cm 

detection radius and 220 degrees sensing angle.

Figure 2. The algorithm flowchart of individual-
based Queensland fruit fly model for movement 

within a simulated tree canopy. 
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L-system Model 

The entities in the L-system model are 
wild female Qflies and the tree with a 
more detailed plant architecture. One 
unit distance in the model is equal to 1 
cm in reality. The tree has a closed-
canopy (cylinder volume – height: 1 m 
and width: 1.5 m) containing 600 
leaves. The leaf area of each leaf is 20 
cm2. The foliage density of the closed-
canopy is approximately 340 leaves per 
cubic meter. The canopy is considered 
to consist of lower, middle and upper 
parts, each approximately one-third the 
height of the canopy, containing 200 
leaves. Figure 4 is a visualisation of the 
L-system model world and a simulation 
of individual fly movement through a 
closed-canopy.  

2.3. Data Analysis 

Statistical analysis of visits/time in the 
different geometrical zones, e.g. the 
upper, middle, lower canopy, was 
undertaken. Each model was run 
(replicated) 50 times and each simulation was set to stop when the time step reached 15 (equivalent to 15 
minutes in reality). Model outputs have been checked for normality using the Shapiro-Wilk normality test. The 
one-way ANOVA followed by the Tukey test were used to test for significant differences between regions. 
Outcomes of the same geometrical zone from two models were compared using the independent samples t-test. 
The computational time of the two models was analysed using Mann-Whitney-Wilcoxon test.  

3. RESULTS 

In the NetLogo model, the mean 
time spent by Qflies in upper region 
(292.62 mins) was the longest 
among three regions, followed by the 
mean time spent in middle region 
(114.72 mins), and the lower region 
showed the least time (42.66 mins). 
These data were found to differ 
significantly from one another 
(Figure 5). For the mean time spent 
in the tree in the L-system model, 
Qflies visited the upper region 
(309.86 mins) for almost 3 times the 
mean time spent in the middle region 
(106.84 mins), and for almost 7 
times the mean time spent in the 
lower region (33.3 mins). The mean 
time spent in the middle region 
(106.84 mins) was 3.2 times as long 
as the mean time spent in the lower 
region (33.3 mins). These data were 
found to differ significantly from one 
another (Figure 6).   

Comparison of the same regions 
between the two models showed 

Figure 3. Simulation of individual fly movement through a closed-
canopy. The green cubes represent leaves, with number of visits 

indicated for where the fly has already been. The lines between cubes
are hop paths. 

Figure 4. Simulation of individual fly movement through a closed-
canopy. Leaves show the number of visits where appropriate. The lines 

between leaves are hop paths. 

378



Wang et al., Spatially explicit individual-based modelling of insect-plant interactions: effects of level of detail in 
Queensland fruit fly models 

differences. Flies spent more time in the upper region of the L-system model than of the NetLogo model, 
whereas in contrast, the time spent in the middle or lower region in the L-system model was less than the time 
spent in the middle or lower region in the NetLogo model. These data were found to differ significantly from 
one another (Table 1).    

For the computational time, comparison of the two models showed that the computational time of L-system 
model is much shorter than that of the NetLogo model. These data were found to differ significantly from one 
another (Table 2).     

4. DISCUSSION AND CONCLUSIONS 

Both models built from published 
behavioural data with different levels of 
detail, were found to result in simulated 
activity consistent with real-world 
movements of Qflies (as published): the 
model predicts that most Qflies will be 
found in the mid to upper canopy. There 
is general agreement that the abundance 
of frugivorous fruit flies at different canopy heights is varied, and the increasing height is generally associated 
with greater abundance (Balagawi et al., 2012). This argument can be supported by reference to data from the 
wild tobacco fruit fly, Bactrocera cacuminata (Hering) (Raghu et al., 2004), the Queensland fruit fly, 
Bactrocera tryoni (Froggatt) (Balagawi et al., 2012), the apple maggot fly, Rhagoletis pomonella (Walsh) 
(Casas and Aluja, 1997), the Mexican fruit fly, Anastrepha ludens (Loew) (Robacker et al., 1990), and the 
Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Holbrook and Fujimoto, 1969). In particular, the 
model predictions are supported by the findings of Balagawi et al. (2012) in terms of the patterns of abundance 
of Qflies in different heights of canopy: fewer Qflies are found in the lower canopy compared with the middle 
and upper canopy. As an applied outcome, Balagawi et al. (2012) proposed that protein bait sprays for Qfly 
management should be applied as high in the canopy as is mechanically possible for greatest efficacy. 

In this study, the NetLogo model is relatively easy to be built, as NetLogo provides a simple yet powerful 
programming language, built-in user-friendly 
graphical interfaces, and comprehensive 
documentation (Railsback et al., 2006). Thus, it can 
widely be used by a range of users, not only 
modellers but also biologists, to develop their models 
quickly. However, computational time can be 
substantially increased when a large number of 

Figure 5. Mean time (min) spent by 30 Qflies in 
each region in the NetLogo model. Columns with 

the same letter are not significantly different at P = 
0.05 (n = 50 simulations). Upper vs. Middle vs. 

Lower (Mean = 292.62|114.72|42.66, F = 4164.57, 
df = 2, P < 0.001). 
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Figure 6. Mean time (min) spent by 30 Qflies in each 
region in the L-system model. Columns with the same 
letter are not significantly different at P = 0.05 (n = 50 

simulations). Upper vs. Middle vs. Lower (Mean = 
309.86|106.84|33.3, F = 5852.80, df = 2, P < 0.001).
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Table 2. The comparison of median computational time
(milliseconds) of the two models (Qfly = 30, n = 50
simulations). 

NetLogo vs. L-system Median 1 Median 2 W P 

Computational Time 136568.5 156 2500 < 0.001

Table 1. The comparison of mean time (min) spent by 30 Qflies in 
each region of the tree in the two models. 

NetLogo vs. L-system Mean 1 Mean 2 t df P 

Upper 292.62 309.86 -4.99 97 < 0.001 

Middle 114.72 106.84 2.77 97 0.007 

Lower 42.66 33.30 6.02 96 < 0.001 
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agents are applied to the model world. The NetLogo model is less detailed but requires that more time be spent 
to conduct simulations. On the other hand, computational time of the L-system model is much faster as shown in 
Table 2, and it provides a realistic tree structure, which may help entomologists gain additional perspectives. 
Perhaps the disadvantage of the L-system model is that it requires higher level knowledge of computer science, 
especially computer graphics and programming language. This would limit its learnability and usability.  

According to Figure 5 and Figure 6, there is no difference between the two models in terms of spatial population 
distribution patterns in the plant canopy. Thus, NetLogo can be better used under such circumstances due to the 
advantage of its learnability and usability. For example, investigating scientific questions like insect spatial 
population distribution in plant canopies and how different tree architectures affect insect behaviour. This 
recommendation assumes that those questions do not require a finer spatial resolution.  

As Table 1 shows, there is significant difference between the same regions in the two models. Qflies spent more 
time in the upper region of the L-system model than of the NetLogo model, and correspondingly less in the 
middle or lower region. The reason for this difference is that the L-system model has a more detailed tree 
architecture with individual leaves, with gaps between leaves allowing flies to move through what would have 
been a blocking cube in the NetLogo model. In order to determine the accuracy of these findings, real-world 
trials will be needed. These findings suggest that the L-system model is better to use to look at how foliage 
density and foliage position affect fruit fly behaviour. In addition, its faster computational time as seen in Table 
2 and finer resolution makes the L-system model more suited to simulate landscape scales such as orchards 
including multiple trees, than the NetLogo model.   

In summary, this study has demonstrated that it is feasible to build an individual-based model from published 
data to predict fruit fly movement. Such models allow rapid testing of ideas about insect interactions with plant 
architecture in silico rather than in vivo to generate new perspectives. As a result, model outcomes could be used 
to inform future experiments. For instance, vase-shaped trees are very common in some Australian orchards 
(Allan et al., 1993; Campbell et al., 1996). Orchardists modify tree architecture for a number of reasons such as 
to increase fruit-yield and reduce occurrence of some pests and diseases (Campbell et al., 1996; Simon et al., 
2007) but impact on Qfly movement and host-finding success does not appear to have been investigated 
specifically. The strength of individual-based modelling approach is that predictions can be achieved in a timely 
fashion from existed simple behavioural data. Those predictions can guide future experiments that will be 
conducted in the field to investigate host plant architecture and foliage density effects on host-finding. 
Therefore, time and resources can be better focussed on experimentation that shows the greatest likelihood of 
success. 
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