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Abstract: Modeling facilitates simulating the behavior of a system for a variety of initial conditions, 
excitations and systems configurations. The quality and the degree of the approximation of the models are 
determined and validated against experimental measurements. Neural networks are very sophisticated 
modeling techniques capable of modeling extremely complex functions employed in statistics, cognitive 
psychology and artificial intelligence. Especially, neural network model that emulates the central nervous 
system is a part of theoretical as well as computational neuroscience. Since, graphs are the abstract 
representation of the neural networks, graph analysis has been used in the study of neural networks, 
anatomical and functional connectivity. This approach has given rise to a new representation of neural 
networks, called Graph neural network, which encompasses both Biological neural networks and Artificial 
neural networks. In machine learning and cognitive science, a class of artificial neural networks is a family of 
statistical learning algorithms inspired by biological neural networks (the central nervous systems of animals, 
in particular, the brain) and they are used to estimate or approximate functions that depend on a large number 
of unknown inputs. Particularly, in the area of signal processing, the prime goal of the neural networks is to 
obtain a good approximation for some input/output mapping, by enhancing the performance of captured 
signals. Consequently, improving quality of noisy signals/images through noise reduction has become an 
active area of research. In such noise reduction problems, the graph neural networks can be used quite 
effectively by suitably designing it to train with input sequences; which are assumed to be a composition of 
the desired signal plus an additive Random/Gaussian noise.  

Until recently, wavelets had been widely used in signal processing. However, wavelets suffer from the 
limitations of orientation selectivity and as a result, they fail to represent changing geometric features of the 
signal along edges effectively. Curvelet transform, on the contrary, exhibits good reconstruction of the edge 
data as it incorporates a directional component to the conventional wavelet transform and therefore can be 
robustly used in analysis of higher dimensional signals. 

In this paper, the endeavour is to employ graph neural networks in combination with the curvelet transform 
for the enhancement of the corrupted signal and device a unified signal denoising technique using appropriate 
thresholding function. The experimental results show that the proposed model produces better results in 
terms of signal to noise ratio and computed mean square error - the most commonly used measures to 
determine performance factor/quality of the captured signal.  
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1. INTRODUCTION 

The advancement in the theory of neural networks has inspired new applications in the field of neuroscience. 
These applications include study of anatomical and functional connectivity based upon functional magnetic 
resonance imaging, electroencephalography and magnetoencephalography (Cornelis et al., 2007). Of late, 
wavelet based multi-resolution techniques were widely used in image/signal processing, optical data analysis 
etc. Among others, applications of wavelet transform has been explored in analyzing solitons (Bhosale and 
Biswas, 2013), bio-informatics (Bhosale et al., 2013), neural networks (Bhosale et al., 2013). However, 
wavelets fail to provide good direction selectivity, which is also an important response property of simple 
cells and neurons at stages of the visual pathway. To overcome this limitation, in 1999, an anisotropic 
geometric wavelet transform, named ridgelet transform, was proposed by Candes and Donoho, which later on 
modified to block ridgelet-based transform called curvelet transform (Candès and Donoho, 2005). 
Subsequently, a considerably simpler second-generation curvelet transform based on a frequency partition 
technique was proposed by the same authors. This modified second-generation curvelet transform has been 
proved to be a versatile and efficient tool for signal/image processing, seismic data exploration, fluid 
mechanics, and solving partial differential equations encountered in non-linear physical phenomena. 
Recently, curvelet transform has been used in image denoising for its ability to obtain high quality images 
(Kota and Reddi, 2011). From the analysis of CT scan images, curvelet transform shows better results in 
terms of recovering the original image from the noisy one than the wavelet transform (Sivkumar, 2007). As 
most of the natural signals are assumed to have additive random noise, modeled as Gaussians, removing 
additive Gaussian noise by nonlinear methods such as curvelet denoising has produced better results (Yaser 
and Mahdi, 2011). Besides, curvelets in combination with neural networks have been successfully used in 
seismic data processing (Hassan et al., 2013). Another study presented an integrated classification machine 
(ICM), which is a hierarchy of artificial neural networks that are trained to classify the seismic waveforms 
(Shimshoni and Intrator, 1998). A velocity model inversion approach using artificial neural networks for the 
study of aftershocks from the 2000 Tottori, Japan, earthquake located around station SMNH01was proposed 
by Moya, (2010). 
 
Various techniques are reportedly used in signal extraction and related applications. Prominent amongst them 
are: one, separating noisy mixed signals using fast Independent Component Analysis (ICA) algorithm and 
then applying curvelet thresholding and the other one, using neural network thresholding to denoise the 
mixed signals. The present work elucidates a systematic transition from classical wavelets to curvelets; and 
proposes a model that unifies both these approaches.   

2. CURVELET TRANSFORM FORMULATION 

This formulation is due to Candes and Donoho (2005), which involves two main components: one, 
considering polar coordinates in frequency domain and two, constructing curvelet elements being locally 
supported near wedges. 
The Continuous Curvelet Transform (CCT), ݂	 → ,ܽ)௙߁	 ܾ, ,ଵݔ)݂ of functions ,(ߠ  ଶ) on ܴଶ, into a transformݔ
domain with continuous scale  a > 0, location  ܾ	 ∈ 	ܴଶ, and orientation ߠ	 ∈ 	 [0,  :is devised as follows (ߨ2

Consider the polar coordinates in frequency domain, ݎ = ඥߦଵଶ + ߱  ,ଶଶߦ = ݊ܽݐܿݎܽ కభకమ corresponding to ݔ	 ߦ the spatial variable, and ,்(ଶݔ	;ଵݔ)	= = ,ଵߦ)  , the variable in frequency domain.  Also consider the pair	ଶ)்ߦ
of windows W(r) and V (t), called radial window and angular window respectively 
  

(ݐ)ܸ         = ൝ 1, |ݐ| ≤ 1/3cos[ݐ|3)ߥ2/ߨ| − 1)], 1/3 ≤ |ݐ| ≤ 2/30, ݁ݏ݈݁   

(ݎ)ܹ         = ቐ cos[5)ߥ2/ߨ − ,[(ݎ6 2/3 ≤ ݎ ≤ 5/61, 5/6 ≤ ݎ ≤ 4/3	cos[ݎ3)ߥ2/ߨ − 4)], 4/3 ≤ ݎ ≤ 5/3,0,                              (1)                                                                            ݁ݏ݈݁

 
where ߥ is a smooth function satisfying 
 

(ݔ)ߥ         = ቄ0, ݔ ≤ 01, ݔ ≥ (ݔ)ߥ , 1 + 1)ߥ − (ݔ = 1, ݔ ∈ ܴ  

 
The windows should satisfy the admissibility conditions (2) 
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׬       ଶ(ݎܽ)ܹ ௗ௔௔ஶ଴ = 1, ݎ∀ > 0, ׬ ଵିଵݐଶ݀(ݐ)ܸ = 1                                                                                             

(2)                                                      
 
The window functions are used to construct a family of complex-valued waveforms, called curvelets, with 
three parameters: the scale ܽ	 ∈ (0; 	1], the location ܾ	 ∈ ܴଶ, and the orientation ߠ ∈ 	 [0;  Using polar .(ߨ2	
coordinates (ݎ; 	߱) in frequency domain, a-scaled window, called polar wedge, is given as ܷ௔ = ܽଷ/ସܹ(ܽݎ)ܸ ቀ ఠ√௔ቁ, for some ܽ with 0 < ܽ ≤ 1, where the support of ܷ௔  depends on the supports of 

windows  W and V. 
Let the basic element ߛ௔,଴,଴ ∈ ො௔,଴,଴ߛ ଶ(ܴଶ) be given by its Fourier transform asܮ = ܷ௔(ߦ). 
By translation and rotation of basic element ߛ௔,଴,଴, the family of analyzing elements, called curvelets, is 
generated as 
 
(ݔ)௔௕ఏߛ       	= 	 	ݔ)௔଴଴(ܴఏߛ − 	ܾ))                                                                                                                   (3)                             
 
where ܴఏ is the 2 × 2 rotation matrix effecting planar rotation by θ radians 
  

      ܴఏ = ቀcos ߠ − sin sinߠ ߠ cos ߠ ቁ                                                                                                                               (4) 

 
Applying this family of high frequency elements, ൛ߛ௔,௕,ఏ: (0,1], ܾ ∈ ܴଶ, ߠ ∈ ݂ ௙ of߁ ,ൟ,  CCTߨ0,2] ∈  ,ଶ(ܴଶ)ܮ
the curvelet transform is expressed as 
 
,ܽ)௙߁       ܾ, (ߠ = ,௔,௕,ఏߛ〉 ݂〉 = ׬ ோమ	ݔതതതതതത݀(ݔ)݂(ݔ)௔,௕,ఏߛ                                                                                           (5) 
 
The corresponding inversion/reproducible formula is 
  
(ݔ)݂       = ,ܽ)௙߁׬ ܾ, (ߠ                              (6)                                                                                                 (ߠ݀	ܾ݀	ܽ݀)ߤ(ݔ)௔௕ఏߛ

      ‖݂‖௅మଶ = ,ܽ)௙߁ห׬ ܾ,   (ߠ݀	ܾ݀	ܽ݀)ߤหଶ(ߠ
 

where, ߤ denotes the reference measure, ݀ߤ	 = 	 ௗ௔௔య  ߠ݀	ܾ݀

This formula is valid for ݂ ∈ |ߦ|  ଶ that has a Fourier transform vanishing forܮ	 < 2/ܽ଴. 
 
A discrete version of the continuous curvelet transform, called Discrete curvelet transform (DCT), can be 
derived by a suitable sampling at the range of scales, orientations and locations (Kota and Reddi, 2011).  
To construct DCT, choose the scales ௝ܽ = 2ି௝, ݆ ≥ 0; the equidistant sequence of rotation angles 
 

௝,௟ߠ ,௝,௟ߠ       = గ௟ଶష[ೕ/మ]ଶ  with ݈ = 0,1, … ,4. 2[௝/ଶ] − 1; and the positions 

      ܾ௞௝,௟ = ܾ௞భ,௞మ௝,௟ = ܴఏೕ,೗ିଵ ቀ௞భଶೕ , ௞మଶೕ/మቁ, with ݇ଵ, ݇ଶ ∈ ܼ. 

 
This choice will lead to a discrete curvelet system that forms a tight frame.  
In this system, every function ݂ ∈  ,will be representable by a curvelet series	ଶ(ܴଶ)ܮ	
 
     ݂ = ∑ ௝ܿ,௞,௟(݂)ߛ௝,௞,௟௝,௞,௟ = ∑ 〈݂, ௝,௞,௟௝,௞,௟ߛ〈௝,௞,௟ߛ , for which the Parseval identity, 

     ∑ ห〈݂, ௝,௞,௟〉หଶ௝,௞,௟ߛ = ‖݂‖௅మ(ோమ)ଶ , ∀݂ ∈  .ଶ(ܴଶ)  holdsܮ

 
The terms in the above series, ௝ܿ,௞,௟(݂) = 〈݂,   .are the curvelet coefficients	௝,௞,௟〉ߛ
As a matter of fact, the curvelet coefficients are obtained by Plancherel's theorem for ݆ ≥ 0 as 
 

      ௝ܿ,௞,௟(݂) = ׬ ோమ	ݔ݀(ݔ)ఫ,௞,௟തതതതതതߛ(ݔ)݂ = ׬ መ݂(ߦ)ߛොఫ,௞,௟തതതതതത(ߦ)݀ߦ	ோమ = ׬ መ݂(ߦ) ௝ܷ ቀܴఏೕ,೗ߦቁ ݁௜〈௕ೖೕ,೗,క〉݀ߦ	ோమ ,                          (7)         

 

where መ݂(ߦ) = ଵଶగ ׬ ோమ	ݔ݀௜〈௫,క〉ି݁(ݔ)݂ .                      

 
The family of curvelet functions in this system, ߛ௝,௞,௟(ݔ), is generated from the basic curvelet 
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(ߦ)ො௝,଴,଴ߛ  = ௝ܷ(ߦ)  as 

(ݔ)௝,௞,௟ߛ         = ௝,଴,଴ߛ ൬ܴఏೕ,೗൫ݔ − ܾ௞௝,௟൯൰, where the scaled windows take the form 

       ௝ܷ(ݎ, ߱) = 2ିଷ௝/ସ	ܹ(2ି௝ݎ)ܸ ቀଶೕ/మఠଶగ ቁ = 2ିଷ௝/ସ	ܹ(2ି௝ݎ)ܸ ൬ ఠఏೕ,೗൰                                                            (8) 

 
It is seen that the curvelet functions, ߛ௝,௞,௟(ݔ), in frequency domain are obtained as the inverse Fourier 
transform of a suitable product of the windows W and V as 

(ߦ)ො௝,௞,௟ߛ         = ݁ି௜〈௕ೖೕ,೗,క〉 ௝ܷ ቀܴఏೕ,೗ , ቁߦ = ݁ି௜〈௕ೖೕ,೗,క〉2ିଷ௝/ସ	ܹ(2ି௝ݎ)ܸ ൬ఠାఏೕ,೗ఏೕ,೗ ൰                                                  (9) 

In practical implementations, Cartesian arrays instead of the polar tiling of the frequency plane are 
convenient to use. The Cartesian counterpart of curvelet-like functions is given by 
(ݔ)௝,௞,௟ߛ  = ௝,଴,଴ߛ ൬ܵఏೕ,೗൫ݔ − ܾ௞௝,௟൯൰, which is generated from the basic curvlets, ߛො௝,଴,଴(ݔ) = ௝ܷ(ߦ)  
with shear matrix  ܵఏ = ቀ 1 0−tanߠ 1ቁ. 

 
The curvelet coefficient in Cartesian arrays will be therefore obtained as 
 

       ௝ܿ,௞,௟(݂) = ׬ መ݂(ߦ) ௝ܷ ቀܵିଵఏೕ,೗ߦቁ ݁௜〈௕ೖೕ,೗,క〉݀ߦ	ோమ = ׬ መ݂ ቀܵఏೕ,೗ߦቁ ௝ܷ(ߦ)݁௜〈௞ೕ,క〉݀ߦ	ோమ ,                                        (10) 

where ௝݇ = ൫݇ଵ2ି௝, ݇ଶ2ି[ି௝/ଶ]൯, (݇ଵ, ݇ଶ)் ∈ ℤଶ 
 
Yet another version, called Fast digital curvelet transform (FDCT), is based on wrapping of Fourier samples 
(Candes et al. 2006). This takes a 2D signal/image as an input in the form of a Cartesian array ݂	[݉, ݊], 
where 0	 ≤ 	݉	 < ,ܯ	 0	 ≤ 	݊	 < 	ܰ where M and N are the dimensions of the array; and the output will be a 
collection of curvelet coefficients, ܿ஽(	݆, ݈, ݇ଵ݇ଶ), indexed by a scale ݆, an orientation l and spatial location 
parameters ݇ଵ and ݇ଶ, given as 
 
        ܿ஽(	݆, ݈, ݇ଵ݇ଶ) = ∑ ݂[݉, ௝,௞,௞భ௞మ஽ߛ[݊ [݉, ݊]଴ஸ௠ஸெ଴ஸ௡ஸே ,                                                                                   (11)                             
 
for any bi-variate function, ݂	 ∈ 	  .ଶ(ܴଶ) associated with signal vectorܮ

3. NEURAL NETWORKS  

A pulse, or a signal or an image can be represented by neural network in abstract form. Neural networks are 
models which are structurally very simple because they consist of very simple building blocks, neurons that 
are organized into layers. A neuron is a basic element of a network that is mathematically presented as a 
point in space toward which signals are transmitted from surrounding neurons or inputs. Since graphs are the 
abstract representation of neural networks, a Graph theoretic approach can be invoked wherein the 
computational elements, neurons of the network can be shown as nodes. Recently various approaches have 
been unified in neural network models under graph neural networks (GNN), which are used for processing 
the data represented in graph domains. GNN is a larger class of neural networks which includes Biological 
neural networks (BNN) and Artificial neural networks (ANN) (Podolak, 1998), which are widely used in 
noise reduction problems (Badri, 2010). Moreover, GNNs have been proved to be a sort of universal 
approximator for functions on graphs and have been applied to several problems, including spam detection, 
object localization in images, molecule classification (Scarcelli, 2009). In mathematical sense, GNN 
implements a function ߬(ܩ, ݊) ∈ ܴ௠  that maps a graph ܩ and one of its nodes ݊ onto an ݉-dimensional 
Euclidean space. 

4. LINEAR GAUSSIAN FACTOR ANALYSIS 

Independent component analysis (ICA) is widely used in statistical signal processing, medical image 
processing, and telecommunication applications (Hyvrinen and Oja, 2000). For example, ICA is used for 
finding factors or components from multivariate statistical data and is one of the many solutions to the blind 
source separation (BSS) problem (Cardoso and Souloumiac, 1993). BSS is a method of extracting underlying 
source signals from a set of observed signal mixtures with little or no information to the nature of these 
source signals (Shehata et al., 2013). 
The basic ICA model is expressed as, 
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(ݐ)ܠ          = (ݐ)ܛۯ + િ(ݐ)                                                                                                                             (12)                              
 
where x(ݐ) is an N dimensional vector of the observed signals at the discrete time instant t, A is an unknown 

mixing matrix, s(ݐ)	is original source signal of ܯ ܯ)	ܰ× ≤ ܰ) and η(ݐ) is the observed noise vector 
and M is number of sources.  
More explicit ICA model, called linear Gaussian factor analysis (GFA) model that represents the signal by 
GNN (Valpola, 2000) is, 

(ݐ)௜ݔ          = ∑ ௝(ݐ)௝ݏ௜௝ܣ + ܽ௜ +                               (13)                                                                                               (ݐ)௜ߟ

where ݅ indexes different components of the observation vector xi, representing weighted sums of underlying 

latent variables, ݆ indexes different factors and ܣ௜௝are the weights of the factors	ݏ, also known as factor 

loadings. The factors s and noise ߟ are assumed to have zero mean. The bias in ݔ is assumed to be caused by ܽ. The effect of the inaccuracies and other causes is summarized by Gaussian noise ߟ. If the variances of the 
Gaussian noise terms, (ݐ)ߟ are denoted by ߪ௜ଶ, the probability which the model gives for the observation ݔ௜(ݐ) can be written as 

(ݐ)௜ݔ)ܲ          ∣ ,(ݐ)ݏ ,ۯ ܽ௜, (௜ଶߪ = ଵටଶగఙ೔మ ݌ݔ݁ ቆ− ൣ௫೔(௧)ି∑ ஺೔ೕ௦ೕ(௧)ି௔೔ೕ ൧మଶఙ೔మ ቇ                                                           (14)  

In vector form, GFA can be expressed as 

(ݐ)ܠ          	= (ݐ)ܛۯ	 	+ 	܉	 + 	િ(ݐ)                                                                                                                 (15)                             
 
Equivalently, ܛۯ)ܰ~(ݐ)ܠ + ,܉ ોଶ), where ݔ, ,࢙  .is a matrix ࡭ are vectors and ࣁ and ࢇ

The purpose of the component analysis is to estimate original signal, s(ݐ), from the mixed signal, x(ݐ). 
That is, equivalent to estimating the matrix ܣ. Assuming that there is a matrix ܹ, which is the de-mixing 

matrix or separation inverse matrix of ܣ , then the original source signal is obtained by 
 
         s(ݐ) = Wx(ݐ)                                                                                                                                     (16) 
 
This ICA algorithm assumes that the mixing matrix ࡭ must be of full column rank and all the independent 
components (࢚)ܛ, with the possible exception of one component, must be non-Gaussian (Sivkumar, 2007). 

5. CURVELET INDUCED SIGNAL DENOISING 

In physical systems, transmitted signals are usually distributed partially, or sometimes almost completely by 
an additive noise from the transmitter, channel, and receiver. Noise arises due to imperfect instruments used 
in signal processing, problems with the data acquisition process, and interference which can degrade the data 
of interest. Also, noise can be introduced due to compression and transmission errors (Motwani et al., 2004). 
De-noising or the noise reduction is an essentially required process to enhance the estimation process of 
signal/image reconstruction of the captured signal. Several signal denoising techniques are proposed in 
reported literture.  
Among others, curvelets, being analytic signal filters, curvelet thresholding technique has been prominently 
used in signal processing. Curvelet thresholding is a simple operation, which aims at reducing noise in a 
noisy signal. It is performed by selecting the FDCT coefficients below a certain threshold and setting them to 
zero 
           

ఒݕ            = ൜ݕఒ, |ఒݕ| ≥ ,ఒ0ݐ |ఒݕ| < ఒݐ                                                                                                                               (17) 

 
where ݐఒ is the threshold and λ is the index. 
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The threshold used in this technique is ݐఒ 	=  for some scale k, where σ is an estimation of the standard ,ߪఒߪ݇	
deviation of the noise estimated from the finest scale coefficients. 
Another approach adopted recently in signal denoising problems is thresholding neural network (TNN), 
wherein thresholding function is used instead of activation functions in feed forward neural network and 
threshold value is adjusted using (Yaser and Mahdi, 2011),  

ఒାଵݐ            = ఒݐ + ఒݐ∆ ఒ , whereݐ∆ = −∝ డெௌாడ௧ ቚ௧ୀ௧ഊ, ∝ is learning rate,                                                       (18) ݐఒ is a threshold,  ݐఒ = ܮ σ is a noise variance and  ,	ܮ	݃݋2݈	ඥߪ = ܰଶ is size of the signal. 
 
Now, in the proposed technique, recalling linear Gaussian factor analysis (GFA) model that represents the 
signal ݔ௜(ݐ) by GNN (13) and applying FDCT (11) to signal, ݔ௜(ݐ), to obtain curvelet coefficients: 
           
,݆	)஽ݔ              ݈, ݇ଵ݇ଶ) = ∑ ,݉]௜ݔ ௝,௞,௞భ௞మ஽ߛ[݊ [݉, ݊]଴ஸ௠ஸெ଴ஸ௡ஸே                                                                               (19)                             
 
The expression (19) represents the decomposition of the signal into a sequence of curvelet coefficients. 
The curvelet coefficients of noisy signal so obtained can be now used as the input to the threshold function, 
  

,ݔ)݂            (ఒݐ = ݔ − ௫௘௫௣[(௫ ௧ഊ⁄ )మିଵ] + ଵ/଼௫௘௫௣(௫/଴.଻ଵ௧ഊ)మ                                                                                       (20) 

 
where x depicts the curvelet coefficients obtained from noisy signal ݔ௜(ݐ). 
 
The thresholding function ݂(ݔ, (ఒݐ → 0 in[−ݐఒ, ,ݔ)݂ , and	ఒ]ݐ (ఒݐ 	=  ,outside the threshold interval, thus	ݔ	
converging to curvelet coefficients themselves. It means, the noisy coefficients in the threshold interval [−ݐఒ,  ఒ] are shrieked. For chosen learning rate and convergence value, the universal threshold value (18) isݐ
obtained during learning process. In test phase, computed threshold value in learning phase is used by the  
thresholding function (20) to demise curvelet coefficients of test signals. 
Finally, inverse curvelet transform (6) is applied to get the desired denoised signal ݔො௜.  
 
The proposed curvelet induced GFA signal denoising model can be put to performance factor analysis. 
Among the various performance factors, the peak signal to noise ratio (PSNR) and root mean square error 
(RMSE) are the most commonly used measures of quality of reconstruction in signal denoising. Higher the 
value of PSNR with minimum value of RMSE, better the performance of the denoising model. 
The PSNR and RMSE are calculated using the expressions 
 

          ܴܲܵܰ = 10 logଵ଴ ൬ ∑ ௫మ(௜)೔ಿసభ∑ [௫(௜)ି௫ො(௜)]మ೔ಿసభ ൰,	ܴܧܵܯ = ଵேඥ∑ (݅)ݔ] − ො(݅)]ଶே௜ୀଵݔ                                                 (21) 

 
where ݔ(݅) is the original source signal, ݔො(݅) is the separated signal, ݅ is the sample index and N is the 
number of samples of the signal. 
The PSNR and the other statistical measures such as mean and standard deviation of the PSNR for different 
signal sub-bands/samples can be compared to determine the performance of the proposed signal denoising 
model.  
To illustrate the performance of the devised GFA model, simulations are performed on noisy mixed 256X256 
‘Lena’ image and sample CT image on Matlab® R 7.9 on a core i7 2.2 GHz PC and curvelet transform via 
USFFT software package.  
The denoising results (PSNR in dB) in both the experiments are presented below: 
 
Image Noisy Image Soft curvelet 

thresholding 
TNN 
thresholding 

Curvelet 
induced GFA 

RMSE 

Lena  20.01(σ=10) 24.89 32.05 34.25 0.177533 
CT (Random 
noise) 

21.09 (m=0, 
σ2=0.01) 

26.89 28.74 32.14 0.164434 

CT (Gaussian 
noise) 

19.77(m=0, 
σ2=0.01) 

27.70 29.64 31.17 0.14564 

 
From the experimental results, it is seen that the curvelet induced GFA gives increased PNSR with minimum 
RMSE for the used images. Similar simulations can be performed for satellite images, seismic data, medical 
images. 
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6. CONCLUSION 

The present work integrates the Independent component analysis, graph neural networks and curvelet 
thresholding techniques adopted in signal denoising processes so as to harvest the advantages and overcome 
the inherent limitations of each of them. Denoising using the curvelet transform recovers the original signal 
from the noisy one using lesser coefficients than the wavelet transform. Moreover, curvelet transform 
provides high PSNR- the most commonly used measure of quality of reconstructed signal- and removes the 
Random as well as Gaussian white noises. Further, the wrapping based Curvelet transform is conceptually 
simpler, faster and invertible with rapid inversion algorithm of the same complexity than the existing 
techniques. Thus curvelet outperforms the wavelet transform in several ways. 
The proposed curvelet induced Gaussian factor analysis model in Graph neural network settings unifies 
earlier denoising models, consequently enhances the performance as to the recovery and quality of the 
extracted signals of higher dimensions that arise in wide range of applications including medical image 
processing, seismic exploration, fluid mechanics, solutions of partial different equations, and compressed 
sensing.  
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