
The Keyword Aggregator web service — a tool and
methodology for managing digital objects’ keywords

D. Benn a, N. J. Car b, J. Yu b and S. J. D. Cox b

aCSIRO Information Management & Telecommunications, Adelaide, Australia
bCSIRO Land & Water Flagship, Brisbane & Melbourne, Australia

Email: David.Benn@csiro.au

Abstract: The need to tag digital objects in various repositories such as datasets or scientific papers
to allow for thematic classification is a well-known problem. In some cases a free tagging approach
is used where contributors can add any keywords they desire while in other cases, selection from a
controlled vocabulary is mandated.

To enable repository managers to allow both free tagging and the use of controlled vocabularies, we
have created the Keyword Aggregator (KWA) system, which consists of the following components:

• A web service that:
– provides fast search access to vocabulary content;
– stores multiple, controlled, vocabularies of terms;
– permits the addition of new keywords.

• An example widget that makes use of the web service and can be embedded in a web page.
• Use of a relational database that captures keyword use statistics.
• A management methodology that:

– allows particular vocabularies to be selected for use on a per-widget instance basis;
– allows vocabulary updating through storage in versioned repositories;
– stores vocabularies with vocabulary-level metadata enabling vocabulary discovery;
– permits one vocabulary to link to a single term in another vocabulary (allows a

‘vocabulary-of-vocabularies’).

Formal vocabulary representation systems such as the Simple Knowledge Organization System
(SKOS) (Miles and Bechhofer, 2009) have been endorsed by the World Wide Web Consor-
tium (W3C) where complex term relationships need to be represented. Keywords and whole-of-
vocabulary metadata in KWA are stored as SKOS graphs in a graph database. Identification and,
where necessary, creation or conversion of an initial set of science keyword vocabularies in SKOS
has also been part of the work.

Although the focus of KWA is on the creation of a flexible keyword aggregation, management and
search system for science keywords, vocabularies of any kind could, in principle, be handled by this
system.

We describe our Keyword Aggregator system, which is aimed at lowering the effort required to pro-
vide digital object controlled vocabulary and folksonomy term tagging functionality to repository
users. We present usage scenarios relating to CSIRO’s Data Access Portal (DAP) and the MOD-
SIM2015 paper system, key design goals, implementation details, current progress and future work.

Keywords: Aggregation, keyword, vocabulary, RDF, SKOS, triple store

21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 
www.mssanz.org.au/modsim2015

760



D. Benn, N. Car, J. Yu, S. Cox, The Keyword Aggregator web service

1 INTRODUCTION

While it is well understood that there is utility in classifying digital objects using terms from con-
trolled vocabularies, such vocabularies necessarily contain domain knowledge in the metadata pro-
vided for each term (e.g. definitions) and in the structure of the vocabularies themselves which
describe how concepts are linked. This knowledge can take much time and effort to codify. When
a term use scenario calls for terms from multiple domains, not only does the effort to assemble
and use the corresponding multiple vocabularies rise but compounds as the knowledge required for
vocabulary assembly in different domains may call for very different areas of expertise.

For these reasons, a system that aggregates already assembled vocabularies containing much domain
knowledge and presents them for use is of prima facie utility for system implementers wishing to
provide for the tagging of digital objects with terms. Such a system, by enabling vocabulary reuse,
would not only save implementation effort but also promote term and whole vocabulary reuse. This
brings benefits to all users since wider use of a term or vocabulary promotes better understanding.

Repository owners wishing to leverage the knowledge of their users in digital object classification
may enable free tagging, sometimes known as ‘folksonomy’ (Peters and Becker, 2009) use. Such an
approach has the advantage of not constraining a user to existing terms (which may be problematic
if existing term sets are limited or inappropriate). However, this has disadvantages associated with
aspects of the well-known ‘vocabulary problem’ (Furnas et al., 1987) such as poor differentiation
between synonyms, plural/singular confusion and so on, stemming from the shortcomings of using
undefined terms and human input. Strategies for dealing with folksonomy issues are also known:
they can involve some interface tooling, such as term prompting implemented by the Joomla! Content
Management System1, nevertheless, costly forms of term curation are usually required2.

Controlled vocabularies in SKOS and term-list, growing, folksonomies can be stored together within
a single database that supports the Research Description Framework (RDF) (Prudh́ommeaux and
Seaborne, 2008). While presented as a single database for searching, they can be maintained as
separate entities using isolated namespaces. This allows for individual vocabulary/folksonomy man-
agement within the whole, including new vocabulary addition.

2 USAGE SCENARIOS

Examples of two digital object tagging scenarios we studied in order to form requirements for this
project are CSIRO’s Data Access Portal (DAP)3 and the MODSIM2015 conference (to which this
paper was submitted) paper submission system. Neither controlled vocabularies nor folksonomies
have been used in these contexts for general keyword entry, although DAP does mandate the use of
ANZSRC Fields of Research4 codes for classification.

One could conclude from these scenarios that:

• such systems are not needed for digital object discovery, or
• the cost of system implementation is too high, or
• the priority of having a searchable keyword source is not high.

The KWA is for use by systems such as the DAP and MODSIM’s paper submission system to re-
place their free text entry with a searchable source of keywords. It was understood that choice as to
particular vocabularies for use — whether folksonomies and/or controlled vocabularies can be used

1https://docs.joomla.org/J3.x:How To Use Content Tags in Joomla!
2The popular technical advice site stackexchange.com explains their content tagging policy at
https://blog.stackexchange.com/2010/08/tag-folksonomy-and-tag-synonyms/ and their ‘tips for use’ at
http://meta.stackexchange.com/questions/18878/how-do-i-correctly-tag-my-questions demonstrates the effort required.
3http://data.csiro.au/dap
4http://www.abs.gov.au/ausstats/abs@.nsf/0/6BB427AB9696C225CA2574180004463E

761

https://docs.joomla.org/J3.x:How_To_Use_Content_Tags_in_Joomla!
http://stackexchange.com
https://blog.stackexchange.com/2010/08/tag-folksonomy-and-tag-synonyms/
http://meta.stackexchange.com/questions/18878/how-do-i-correctly-tag-my-questions
http://data.csiro.au/dap
http://www.abs.gov.au/ausstats/abs@.nsf/0/6BB427AB9696C225CA2574180004463E


D. Benn, N. Car, J. Yu, S. Cox, The Keyword Aggregator web service

Figure 1. KWA component diagram with important interface types noted.

and whether or not to allow keyword addition by users — all needed to be configurable so that one
tool may cater for multiple needs.

3 KEY DESIGN GOALS

The key design goals for KWA, informed by the usage scenarios initially considered, were:

• Fast keyword search that remains fast even with a large number of vocabularies;
• Relevant search results: semantic weighted and other search strategies needed to be catered

for, not just full-text search. Possibly a choice of search strategies chosen by users;
• A web service exposing all tool functionality for ease of access;
• A web service demonstration client that could either be used directly or used as a reference

implementation;
• Addition of user-defined keywords to allow for folksonomy-style use;
• Recording of keyword usage statistics both for the author’s knowledge but also to potentially

inform search strategies;
• Simple management of separate vocabularies to enable many to be used with little effort.

4 IMPLEMENTATION

4.1 Components

The KWA consists of five components as shown in Figure 1:

• REST API: A Web Service, written in Python Flask5 and delivering JSON6 content to users;
• Example widget7 to act as a reference Web Service consumer that:

– provides a reusable component for embedding in a web page, or
– acts as a reference implementation for use with a language and framework of choice.

• RDF triplestore: For vocabulary storage. Apache’s Jena8 is currently used;
• RESTful triplestore interface: Apache’s Fuseki9 is used but any SPARQL1.1-compliant10

API could be used;
• Relational database: For storing keyword usage information. Currently SQLite11 is used.

4.2 Web Service

The KWA web service provides the following functionality:

5http://flask.pocoo.org
6http://json.org
7http://scikey.org/page/widget
8https://jena.apache.org/
9http://jena.apache.org/documentation/fuseki2/
10http://www.w3.org/TR/rdf-sparql-query
11https://www.sqlite.org/

762

http://flask.pocoo.org
http://json.org
http://scikey.org/page/widget
https://jena.apache.org/
http://jena.apache.org/documentation/fuseki2/
http://www.w3.org/TR/rdf-sparql-query
https://www.sqlite.org/


D. Benn, N. Car, J. Yu, S. Cox, The Keyword Aggregator web service

• Search for keywords across aggregated vocabularies with vocabulary choice and search strat-
egy given to the user;

• Vocabulary details from whole-of-vocabulary metadata;
• Vocabulary addition;
• Vocabulary metadata recording;
• Addition of new (user-defined) keywords;
• Storage and delivery of keyword usage information.

Detailed web service documentation is available online at http://scikey.org/page/documentation for
each of the REST API functions.

Search. Search is this tool’s raison d’être and its most complex function. The API provides an
endpoint to which character strings can be submitted for searching with and which is configurable
with respect to which vocabularies are included and the search strategy used.

Individual vocabularies within the KWA graph database are stored in individual named graphs so that
vocabulary selection is enabled by simply selecting vocabularies and searching against their graphs
only.

The search algorithm used is chosen by widget implementers by setting variables in widget con-
fig. Currently three algorithms can be selected for use. In all cases, the SPARQL query language
(Prudh́ommeaux and Seaborne, 2008) is used to query the graph database:

• simple term search - searches terms’ labels only;
• weighted semantic search - searches amongst terms’ SKOS properties and weights matches

based on property relations;
• hierarchical search - finds matches traversing the broader and narrower relationships between

SKOS terms.

Simple search is made available for comparison only and is not considered a viable search strategy
as it ignores much of the knowledge contained within SKOS vocabularies. Weighted search is akin
to a full-text search but one that preferences text matches in the primary descriptors of terms —
such as term labels — over matches in secondary descriptors, such as descriptions and alternative
labels. Terms with greater weights are returned before those with lower weights. A term matching a
search in multiple fields has its multiple matches summed to provide a greater total weight. Search
weighting can be tuned to alter the result order so it may be adjusted based on user feedback and
testing.

Hierarchical search uses hierarchical relationships in SKOS to determine both the narrowest (most
specific) match for a search and also broader matches that may not have been found via a text match-
ing search. An example is that a search for ‘sea’ could return both the narrow ‘Tasman Sea’ and
the broader ‘water body’. The latter result may not contain the text ‘sea’ but is related to sea in the
hierarchy.

This project is now comparing results between keyword search strategies and intends to further tune
the algorithms used. It is expected that at least the hierarchical search may degrade with scale without
significant engineering.

The values returned via search are the terms’ label, and its URI. Other term values are not returned
as they are resolvable via the term’s URI. Metadata about the vocabulary from which a term codes
is returned to enable users to make decisions about term validity based on vocabulary ownership or
other facts about the vocabulary imparted via metadata.

To meet the design goal of providing fast search (results returned in ‘web time’, i.e. the time a web
user will realistically accept which is less than a second) for all search strategies and as content
grows, we have considered the following methodology: a. tuning of the search algorithms (SPARQL

763

http://scikey.org/page/documentation


D. Benn, N. Car, J. Yu, S. Cox, The Keyword Aggregator web service

Figure 2. KWA widget in use with the term ‘food’ searched for. Due to the use of a weighted search
strategy search non-label elements of terms, such as term descriptions, some of the found terms do
not contain ‘food’ in their title.

queries), b. pre-computing relationships between terms (required for the hierarchical search strategy),
c. dedicating more resources to the graph databases implementing the searches, d. moving to a more
powerful graph database (the StarDog12 product claims greater performance than our current Jena
implementation), e. implementing a map-reduce-style search platform, perhaps based on the Apache
Spark project using the GraphX package13 project. The current KWA system allows for all of these
changes without any disruption to the user experience due to the API layer’s abstraction from the
database layer.

A complete description of the search algorithms is available at http://scikey.org/page/documentation.

4.3 Widget

The KWA widget is a consumer of the KWA API. Widgets present as a partial HTML form that can
be embedded within a host system form for use. Figure 2 shows the KWA example widget in use. The
example widget is written in HTML and JavaScript with substantial use of the jQuery14 JavaScript
toolkit. Communication with the RESTful web service is via asynchronous HTTP requests with
JSON payloads passed to and from the web service.

The widget allows search and selection of keywords relating to a digital object. When 3 or more
characters have been entered into the Keywords text box, a REST API keyword search is initiated.
The JSON result is processed to yield a list of links. If the user selects a link from this list, the
list is collapsed and the keyword added to a list for submission. The user may go on to search for
more keywords and select from the search results before submission. Individual selected keywords
can also be removed. Selected keywords are presented to the system hosting the widget as simple
HTML form textbox values of URIs, one for each selected keyword. The host system need not store
information other than the term’s URI as all KWA terms have resolvable (dereferencable) URIs. If
no keywords are found from a search string, the user is given the option to add a new keyword along
with an optional description, as shown in Figure 3. Navigating away from the page (usual for host
system form submission) causes keyword usage information to be stored in the relational database
via a REST API call.

The widget is configurable so that a widget host may select only certain vocabularies in the KWA
database for use. Additionally, certain search strategies may be selected. Where the widget is not
able to be used directly by a host system (perhaps due to code environment incompatabilities) the
12http://stardog.com
13http://spark.apache.org/graphx/
14http://jquery.org

764

http://scikey.org/page/documentation
http://stardog.com
http://spark.apache.org/graphx/
http://jquery.org


D. Benn, N. Car, J. Yu, S. Cox, The Keyword Aggregator web service

Figure 3. User defined keyword addition. The term ‘fossa’ is being searched for and no matches are
found. It, or an extension of it entered by the user, may be stored as a user-defined keyword, as per
folksonomy practice. A description for the term may be entered.

example widget can be used as a reference implementation. Complete details of how to use, configure
and deploy the example widget are available online15.

4.4 Vocabularies

Within this project we collated a compendium of vocabularies16 potentially useful for keyword
searching. Vocabularies for use by the KWA must be formalised in SKOS. This does limit vocabu-
lary selection to a subset of those in our compendium but without a single data model such as SKOS
specified, multiple vocabulary searching becomes infeasibly complex. Many important vocabularies
have already been formalised in SKOS, such as the Library of Congress’ Subject Headings17 and
for some we deemed important not already in SKOS, such as Thompson Reuters Science Citation
Index18, we undertook conversion to SKOS.

Historical keyword data from previous Modelling and Simulation Society of Australasia’s MODSIM
conferences (2011 & 2013) was also processed into SKOS for potential use by a widget deployed for
future MODSIM conferences. Unlike the Thompson-Reuters terms, this was not already presented
as a vocabulary but first had to be mined from published papers. We are working on a process to
allow vocabularies to be submitted to the system by users.

In order to manage vocabularies, we developed a vocabulary metadata schema19 based largely on the
VOAF schema20 but with extensions to allow for vocabulary linking. Vocabulary linking, is one of
the novel aspects of this project. Our metadata schema for vocabularies allows the root term of one
vocabulary to be associated with a single term in another vocabulary thus generating a ‘vocabulary-
of-vocabularies’ or a hierarchy of vocabularies which we have described in detail previously (Car
et al., 2015). This does not prevent, and we encourage, more fine-grained inter-vocabulary term
linking as per normal SKOS vocabulary formulation.

Keywords submitted by users are placed in a ‘user-defined’ vocabulary that stores terms in SKOS but
without any relationships between terms. In some instances, future curation could see terms moved
into more formal vocabularies however URIs for terms, once created, will not change allowing for
seamless term use even when moved.

See http://scikey.org/page/vocabularies for information about loaded vocabularies and
https://stash.csiro.au/projects/VOC/repos/kwag-vocabs/ for the SKOS vocabularies used (in the
RDF Turtle format).

4.5 Usage Statistics

In any system that is used, it is good practice (essential even) to capture usage statitics. In the KWA’s

15http://scikey.org/page/widget
16http://scikey.org/page/documentation
17http://id.loc.gov/authorities/subjects.html
18http://ip-science.thomsonreuters.com/mjl/scope/scope scie
19http://scikey.org/def/vocab
20http://lov.okfn.org/vocommons/voaf/v2.3/

765

http://scikey.org/page/vocabularies
https://stash.csiro.au/projects/VOC/repos/kwag-vocabs/
http://scikey.org/page/widget
http://scikey.org/page/vocabularies
http://id.loc.gov/authorities/subjects.html
http://ip-science.thomsonreuters.com/mjl/scope/scope_scie
http://scikey.org/def/vocab
http://lov.okfn.org/vocommons/voaf/v2.3/


D. Benn, N. Car, J. Yu, S. Cox, The Keyword Aggregator web service

case, we may be able to determine relative keyword utility where there are two similar keywords and
such knowledge may be used in a future search strategy. Since usage statistics could also indicate
keyword proximity if a user selects multiple similar terms, future clustering learning may take place.
We are not able to use the primary graph database to store these statistics since we wish to leave the
vocabularies stored there in the form in which we receive them as we are not their creators. It would
also be inefficient to use a graph database to store tabular data such as usage statistics.

5 FUTURE WORK

A number of improvements and enhancements are possible and await resourcing:

• Good search performance with large vocabularies and a large number of vocabularies;
• A search strategy using inter-vocabulary individual term linking (e.g. skos:related);
• Provide term metadata (e.g. description) via the widget to enhance keyword selection;
• The automated ingestion of a large number of known vocabularies;
• Establish a streamlined process for vocabulary submission;
• Enhanced vocabulary management through federated governance.

6 CONCLUSIONS

System implementers of the Keyword Aggregator (KWA) are able to provide a web or desktop form
interface for keyword selection to users of their system. They can do this without needing to:

• find, store and manage a large array of published vocabularies;
• maintain relations between vocabularies of broader and narrower concepts;
• managing the collection of new informal terms not yet placed into a controlled vocabulary;
• ensure term search performance while the stored term base grows.

The KWA reduces the effort required by digital object management system implementers in provid-
ing access to the large body of knowledge already captured in existing formal vocabularies to manage
vocabularies approved for use in a particular scenario and domain.

ACKNOWLEDGEMENT

The authors acknowledge the CSIRO Scientific Computing eResearch collaboration proposal that led
to a software development resource being made available for this work.

REFERENCES

Nicholas John Car, Simon Cox, Jane Frazier, Benn David, and Jonathan Yu. A ”vocabulary-
of-vocabularies” with tools for users. 2015. URL https://eresearchau.files.
wordpress.com/2015/07/eresau2015_submission_16.pdf.

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary problem in human-
system communication. Communications of the ACM, 30(11):964–971, 1987. ISSN 00010782.
doi: 10.1145/32206.32212.

Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System Reference, 2009.
URL http://www.w3.org/TR/2009/REC-skos-reference-20090818/.

I. Peters and P. Becker. Folksonomies: Indexing and Retrieval in Web 2.0. Knowledge & information
: studies in information science. De Gruyter/Saur, 2009. ISBN 9783598251795. URL http:
//www.degruyter.com/viewbooktoc/product/42362.

Eric Prudh́ommeaux and Andy Seaborne. SPARQL Query Language for RDF, 2008. URL http:
//www.w3.org/TR/rdf-sparql-query/.

766

https://eresearchau.files.wordpress.com/2015/07/eresau2015_submission_16.pdf
https://eresearchau.files.wordpress.com/2015/07/eresau2015_submission_16.pdf
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.degruyter.com/viewbooktoc/product/42362
http://www.degruyter.com/viewbooktoc/product/42362
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	INTRODUCTION
	USAGE SCENARIOS
	KEY DESIGN GOALS
	IMPLEMENTATION
	FUTURE WORK
	CONCLUSIONS



