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Abstract: Improving data consistency and facilitating opportunities for cross-domain urban research is 
important to understanding patterns of urban development and modelling urban growth for a sustainable 
future. Researchers and policy analysts are confronted with a number of technical challenges when 
comparing data in the water and energy industries both within and across these sectors. These include 
variability in data formats, spatio-temporal granularity, access methods and differing semantic definitions. 
These hinder attempts to access, analyse, interpret, compare and combine the respective water and energy 
datasets. The AURIN Lens 6/2 project has developed the Water and Energy Consumption and Supply 
(WESC) data protocol for encoding WESC datasets and tools for consolidated access via standardised 
geospatial web services. In addition, a number of data agreements across Australian utilities and peak body 
organisations have developed in order to establish a thematic data hub, called the WESC data hub. The 
WESC data hub currently hosts relevant datasets and uses the WESC data protocol to provide access to them 
via the AURIN data portal. In developing the WESC data hub, a number of tools and techniques have been 
developed to streamline and automate the data extract-transform-load and web service deployment process 
for each data provider as well as set up continuous testing frameworks to provide quality assurance and 
performance monitoring of the WESC data hub. In this paper, we will present the technical challenges in 
delivering the WESC data hub across multiple datasets and data providers, as well as the tools and 
methodologies used to rapidly deliver data services and its testing framework - namely, Docker, Linux virtual 
containers, Python and TeamCity. Previously, such deployments required considerable expertise in systems 
administration, configuration management, and web application development, were time-consuming and not 
easily repeatable. However, the tools and techniques presented in this paper provides a generic pattern for 
rapidly developing and deploying standardised geospatial web services and is thus applicable more broadly 
for other domains and data. The methodology used provides software infrastructure resilience as the data 
services can be re-deployed easily using Docker. Continuous build and testing tools, such as TeamCity, 
provide quality assurance as data services are deployed and re-deployed to ensure data integrity as well as 
performance monitoring which allows the systems to be fine-tuned and made more efficient.  
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1. INTRODUCTION 

Understanding urban settlements and patterns of resource consumption in the past, present and into the future 
can be greatly enhanced with access to consistent and reliable water and energy data. However, comparing 
and contrasting data in the energy and/or the water sectors presents a number of challenges. Across the water 
and energy sector similar data is collected on supply and consumption of utilities: water, electricity and gas. 
While water and energy data is similar it is often represented differently by different agencies collecting and 
managing the data. Providing a consistent representation of this data along with metadata that provides 
context and meaning for the data opens up many research possibilities. Therefore, a common data framework 
(including an information platform) and negotiated access to key water and energy dataset are important to 
facilitate evaluation, reporting, analysis and scenario planning towards sustainable, resilient and liveable 
communities. 

Partnering with the Australian Urban Research Infrastructure Network initiative (AURIN), CSIRO has 
developed a nationally applicable data protocol for the recording, storage, access and interoperability of 
supply and consumption datasets for the energy and water sector. AURIN is a Federal Government initiative 
that is providing researchers, designers and planners with access to information services and online tools to 
understand patterns of urban development and to model urban growth for a sustainable future (Sinnott et al. 
2012, Sinnott et al. 2015). CSIRO has developed an information platform, the Water and Energy Supply and 
Consumption (WESC) data hub, to allow access to water and energy datasets to urban researchers, policy 
makers and managers through the AURIN Lens 6/2 Project (L6/2) (Yu et al. 2015). Working with a number 
of energy and water service providers across the nation, CSIRO is facilitating data access of water and energy 
datasets to researchers, government agencies and interested community groups access via the AURIN portal 
for research and policy analysis. The CSIRO WESC data hub is currently hosting and delivering data 
contributed by data providers from the major capital cities and a selection of regional centres in Victoria, 
NSW, ACT and Queensland. The data is delivered out via geospatial web services in a consistent format 
using the WESC Markup Language (WESCML)1. 

Due to the nature of the project and the multiple organisations involved, here are many challenges in 
producing a consistent and rich representation of data across the many sources. Each organisation may 
represent the data differently. For interoperability, these sources require data harmonisation. A web service 
can deliver data in a standard form. A collection of such services conforming to a common standard can 
deliver federated data. Queries can be performed across services and the data can be treated as a whole. This 
provides ready ability to understand data across artificial boundaries imposed by different utility companies 
or data providers.  

The delivery of standardised data through standards-based web data services is well established e.g. 
OneGeology and GeoSciML (Laxton et al. 2010), GEOSS (GEO 2005), and Auscope (Woodcock et al. 
2010). However the configuration of services, Extract-Transform-and-Load (ETL) of data into a common 
format and maintenance and deployment of the components in the information system stack is time 
consuming, sometimes prohibitively so. A major barrier for the deployment of distributed orchestrated 
federated instances of standard web services is the time and expertise required to setup, populate, deploy and 
maintain these services. 

In this paper, we present an approach developed to compose and deploy a configurable spatial information 
system using automated and well-documented processes. We apply modern DevOps approaches, which are 
discussed in Section 2, for deploying energy and water data for the AURIN L6/2 project. In Section 3, we 
present the technical challenges in the AURIN L6/2 project and the tools, approaches and processes used to 
overcome those challenges, including ETL tools written in Python, continuous integration, and 
“infrastructure as code” using Docker a means of creating Linux containers. These significantly reduce the 
effort, expertise and time required to deliver adapt and deploy services. The tools and techniques presented in 
this paper provides a generic pattern for rapidly developing and deploying standardised geospatial web 
services and is thus applicable more broadly for other domains and data. 

2. DevOps 

Reliably deploying developed software systems into operations requires processes that are reproducible and 
programmatic (Loukides, 2012). Developing such systems is the domain of DevOps. Traditionally many 
manual steps would be required to deploy an information services stack and populate it with data. Time is 
spent manually executing commands and configuration files. Knowledge of the deployment process must be 
                                                           
1 See http://wescml.org 
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documented, communicated, and understood between team members. Manual processes are fragile and there 
is a significant risk of mistakes, documentation that is not meticulously maintained and checked risks being 
incorrect or incomplete, and learning and communicating the details of manual processes is an additional 
overhead. Manual processes consume significant resources, tend to degrade over time, be less scalable and 
portable and are high risk due to human error. A key DevOps principle is that infrastructures should be 
completely described using code. A common epithet of DevOps is “infrastructure as code” meaning that, as 
much as is possible, infrastructure should be a by-product of executing code that creates, configures and 
maintains that infrastructure.   

Scientific software systems benefit from DevOps practices and tools. Economou et al. (2014) review DevOps 
in the astronomy community and briefly report on deploying large scale cloud processing at the National 
Optical Astronomy Observatory using reproducible and infrastructure-as-code approaches. Closely related 
are scientific high performance compute infrastructures and cloud systems, all of which are areas of current 
research. Wang et al. (2008) review a range of scientific cloud infrastructure, many of which use virtual 
machine images as the basis for reproducible deployments, expanding capacity and deploying customised 
software systems.  

DevOps overlaps with and is an extension of Software Configuration Management, which is the practice of 
reliably and repeatedly developing, configuring, and deploying software systems (Estublier, 2000). DevOps 
places an emphasis on the deployment of software systems into their penultimate environment, that is, an 
environment before into operations or production. Software Configuration Management tools are key to 
DevOps processes and are rapidly evolving in response to DevOps principles and needs. Puppet2 and Chef3 
are configuration management tools widely used. Puppet and Chef setup software and systems infrastructure 
by executing code that describes the infrastructure. Typically, Puppet and Chef run agents on foundation 
physical or virtual machines. These agents configure the machines they run on according to instructions 
provided from a master service. Different agents may use different parts of the overall code. Furthermore the 
code may then be customized and form part of a broader system.  

A new approach emerging in configuration management is Containerisation. Containerisation is the process 
of building, using and managing containers. Containers are conceptually similar to virtual machines. 
Containers appear as independent operating systems but actually run within a host operating system. 
Containers differ from virtual machines in that they are faster to build and run, and do not depend on true 
virtualisation of underlying hardware. Rather containers exploit the ability of the underlying operating system 
to partition and isolate system resources at the host operating system level. Most containerisation 
implementations are Linux-based. Running containers, like virtual machines, can be saved as images. A 
saved image can then be used to create one, or many, containers with the same specifications container from 
which it originated. In this way containers can be used to reproducibly create software systems. Docker4 is 
one popular containerisation system. In addition to implementing containers and images Docker provides a 
minimalist and flexible language for describing how images should be built. Thus Docker provides 
reproducible and programmatic configuration of systems.  

3. WESC DATA SERVICES DEVELOPMENT AND DEPLOYMENT  

The WESC data hub features a set of services (mainly Web Feature Services using Geoserver 
implementations) through which the AURIN portal is able to access water and energy supply and 
consumption data using Web Feature Service client library via authenticated protocols as outlined in the 
AURIN technical architecture (Sinnott 2012). Figure 1 below shows the components to enable a framework 
for deploying a standardised WESC information stack. The WESC data standard provides the information 
model, XML schema implementation and controlled vocabularies used to encode the data and deploy them 
via Web Feature Service GML encoded data service. The WESC data standard is available online at 
http://wescml.org/). 

This section highlights the processes and tools developed for streamlining the deployment of the data. 
Section 3.1 presents details around the technical challenges of deploying multiple data services for data 
custodians. Section 3.2 outlines the data services deployment processes. Section 3.3 discusses continuous 
testing put in place to ensure the integrity of the development and production deployment environments, 
which provides a useful real-time feedback tool for the developers and system administrators. 

                                                           
2 See https://puppetlabs.com/ (Accessed 30 July 2015) 
3 See https://www.chef.io (Accessed 30 July 2015) 
4 See https://www.docker.com (Accessed 30 July 2015) 
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3.1. Technical challenges 

The challenges in building the WESC Data Hub, aside from data licensing, were harmonising multiple 
datasets from different data custodians, acknowledging governance arrangements for the different data 
custodians, and being able to efficiently develop and deploy the WESC information services stack for each 
data provider that is conformant with the WESC data standard. A total of 16 data custodians from across 
Australia were engaged and agreed to provide data for the purposes of the AURIN L6/2 project - 10 water 
and 6 energy data custodians. These included water authorities, electricity distributors, peak industry 
associations, and federal government agencies. They also varied in the regions which they have data 
holdings, as well as the granularity of the spatial regions they have data, e.g. Yarra Valley Water had water 
consumption data for 2010-2014 at postcode level, Sydney Water provided data for 2006-2013 at the LGA 
scale and the Energy Supply Association of Australia provided data from 1995-2014 at the state level.  

 
Figure 1. The WESC Data Hub 

Each data provider encodes their data in different formats and use different terminologies for the categories 
of data. In addition to this, some data providers implicitly use financial year to denote the time period, while 
others use calendar year. These issues were not always declared upfront thus highlighting the need for agile 
and iterative development and deployment processes. There were also different geographic boundaries and 
classifications used for each data provider. This meant that each WESC information service stack is required 
to reference and encode the appropriate geometries for each deployment.  

3.2. WESC Data Services Deployment Process  

Given the nature of the challenges faced in this project and a short time frame of less than 12 months for 
deploying all 16 information services stacks (at times requiring redeployment for data corrections), processes 
were developed to enable consistent and repeatable deployment of WESC information service stacks in order 
to flexibly develop and deploy versions of a given data service stack. With the governance of each data 
custodian in mind, separate respective instantiations of the WESC information service stack were deployed.  

The WESC data services deployment process involve several components and versioned repositories in order 
to compose and deploy a single WESC information service stack. Figure 2 gives shows the build and 
deployment process and the WESC information services stack components. The main components include: 

● Git repositories (shown in Figure 2 on the left) - source code, files and configurations required for 
building a WESC information services stack is version-controlled in the Git repositories, including 
Dockerfile code for installing and configuring services, and running Python ETL code, Python code 
and for performing ETL, and raw data files from data providers containing electricity, gas and water 
supply and consumption data used as the input for the Python ETL.  

● Docker build process (shown in Figure 2 in the middle) - for implementing the build process which 
involves cloning selected git repositories and then executing the Dockerfile. As the Dockerfile 
executes it clones further git repositories inside the container and uses Python code and data inside 
these to populate services.  
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● WESC information service stack (shown in Figure 2 on the right) - which is configured, deployed 
and populated with data upon completion of the build process. Each WESC stack consists of an 
Apache web server and a Geoserver application server to deliver data through HTTPS, and a 
PostGIS database as the backend for Geoserver to store geospatial WESC data. 

Each WESC stack is created using a Docker configuration file, which is a machine-readable file that captures 
dependencies and instructions for building a Docker container with the requisite components in the stack and 
their configuration (including authentication and WESC data standard configurations). This provides means 
to customising, deploying and populating the Apache-GeoServer-PostGIS system consistently across datasets 
and in a repeatable fashion.  

 

Figure 2. Overview of the deployment process for a given WESC Information Services Stack. 

Python is used as part of the Docker build process to perform an ETL process to extract energy and water 
supply and consumption data from the raw data sources, transform this data to a common WESC database 
schema, and load the data into a PostGIS instance. Delivering data from a new data provider involves 
creating a new Python ETL script, configuring a script to point at the new Python ETL and running the 
existing Docker build process. Using deployment technologies such as Docker allowed the configuration, 
instantiation and deployment of each WESC web service stack to be largely automated and self-contained. In 
most cases, the ETL process is automated as a particular CSV data format was used. In other cases, some pre-
processing was required, which involved manual inspection and verification with the data custodian to ensure 
data quality on both our information systems and the data custodian’s records. 

3.3. Continuous integration and testing 

In order to ensure that each WESC information service stack conforms to the WESC data standard, is 
delivering data for each data custodian with the right spatial features, and is performing efficiently, a 
continuous testing framework is necessary. For this project, TeamCity was used to implement continuous 
build and testing of the WESC information service stacks. TeamCity is a continuous integration server which 
can automate the task of unit testing and build management and can be configured to run at scheduled 
intervals and/or based on some trigger events, such as, revision control system commits. Some of the unit 
tests for the services use the metadata about the geospatial features as inputs, such as, the expected number of 
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features returned for a particular bounding box. The metadata used for the tests are also version-controlled in 
a Git repository and is updated to match a given dataset.  

A unit testing approach was taken to test the information services. Instead of having the user or developer 
write unit tests for each individual service, code templating techniques were employed to generate unit tests 
dynamically based on the metadata associated with each service. The templating code, written in Python is 
integrated with a TeamCity build, but could be run standalone if needed. For the AURIN L6/2 project setup, 
two servers were used, one for hosting the services under development and other for hosting services in a 
production environment. To test both the services under development and in production, two different test 
configurations were defined in TeamCity as shown in Figure 3. 

 
Figure 3. TeamCity AURIN L6/2 configurations. 

Each TeamCity test configuration was scheduled at 30-minute intervals and executed the unit tests generated 
from the metadata. TeamCity would notify the project team when tests for a particular service failed or if the 
service was down via email as well as via the TeamCity web interface. The advantage of this regular testing 
at 30-minute intervals is that it gave the team the ability to monitor the deployed services on both 
development and production environments and respond to services doing down in a timely manner. 
TeamCity reports the details about the service tests which failed including meaningful assertion messages 
encoded in the unit tests along with any source code changes that went into this build run so that changes 
responsible can be inspected. TeamCity reports test duration (see Figure 4) and allows users to view trends 
over the build history, which can be used to fine tune services whose performance have degraded over time.  

 

Figure 4. Screenshot of a TeamCity report showing test duration trend for a test run. 

4. DISCUSSION  

The tooling and methods introduced in this paper streamlines the deployment of information services stacks. 
Such information infrastructures would previously require considerable expertise in systems administration, 
configuration management, and web application development to be able to deploy a single instance let alone 
16 instances as required in this project. In addition, the shared knowledge between team members would 
often be isolated and may differ from one person to another. Instructions for deployment may be maintained 
on separately managed documents and require additional effort to maintain. In contrast, the approach 
presented in this paper allows the configuration management and deployment documentation to be captured 
within the codebase itself. During the entire development and deployment process, not only is the source 
code used for the ETL process versioned using Git, but the configuration and deployment steps captured in 
Docker configuration files, and metadata and code used for testing (via TeamCity) are also version-
controlled. This allowed the project team to implement changes and improvements in a methodical manner to 
build on previous versions and made available to the entire project team. Thus, reducing the effort and 
amount of knowledge of the underlying system required to redeploy a given data service stack or add new 
data services for additional datasets.  
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The tools and techniques presented in this paper provides a generic pattern for rapidly developing and 
deploying standardised information services stacks (geospatial and non-geospatial) and is thus applicable 
more broadly to other domains and data. The approach presented in this paper also provides software 
infrastructure resilience as the data services can be re-deployed easily using Docker. Continuous build and 
testing tools, such as TeamCity, provide quality assurance as data services are deployed and re-deployed to 
fine-tune and improve efficiency, ensure data integrity, and monitor performance. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduce tools, processes, and components to efficiently and consistently develop, deploy, 
and test data services for the WESC data hub as part of the AURIN L6/2 project. Recognising the technical 
challenges in delivering multiple datasets for many data custodians, the tools and processes used allowed 
rapid development and deployment of information services stacks configured to deliver data according to the 
WESC data standard. Using DevOps tools - namely, Docker, Python and TeamCity, the project team were 
able to address the technical concerns and made deployment of 16 WESC information services stacks 
feasible in a short time frame. Using Docker files to specify the ‘infrastructure-as-code’ allowed the 
deployment process to be iterative, repeatable, adaptive and version-controlled. 

The approach we developed enabled efficient and reliable deployment of spatial information services stacks 
delivering geo-located energy and water supply and consumption data. Continuous integration and testing is 
used to validate expected behaviour of the systems and reported when errors were made in configuring an 
information service stack or if services goes down. The benefit of this approach is the lowered effort, 
expertise and time required to adapt and redeploy such information services stacks. The monitoring of 
services allowed timely notifications during development and maintenance phases. This enabled greater 
agility and capacity to deliver the multiple spatial information services stacks efficiently and ensure services 
adhered to the WESC framework. The approach presented in this paper is a generic pattern for methodical, 
repeatable, consistent, testable, adaptable development and deployment of information services stacks for a 
broad range of domains, which will be explored in future work. 
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