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Abstract: Linear programming has since its inception, always been strongly applied to inventory 
management. Linear programming has also been used extensively in many military stockage problems. In a 
military context, two general events test and shape the supply chain. The first is the development of inventory 
control: stockholding and infrastructure capacity policies to meet demands associated with ongoing raise, 
train and sustain requirements. In this case, the military inventory policies have very similar characteristics to 
stockholding in a commercial supply chain, where demands are forecasted and corresponding procurement 
takes place. 

The second event that shapes the structure of the supply chain is the occurrence of a contingency demands, 
often termed a surge demand. In the second case, a contingency will have a planned demand, sustainment 
period and corresponding warning time. While the demand and sustainment period are critical to 
stockholding decisions, it is the warning time, which in conjunction with the vendors constraints on 
supplying at surge rates that is critical to developing inventory holdings, capacity and reserve stocks, often 
called war reserve materiel in the United States Department of Defence. One can often summarise the 
vendors constraints in supplying at a surge rate through the Contingency Provisioning Lead Time (CPLT), 
which is defined as that time the vendor can supply at the required contingency throughput rate. The CPLT 
may be greater than the warning time, indicating the vendor cannot supply at the required throughput rate at 
the start of the contingency. 

With the basic input parameters of raise, train and sustain demands; contingency demand; warning time; 
CPLT; and maximum order quantities; we form a linear program that optimises the infrastructure capacity, 
reserve stocks and nominal inventory holdings at a Defence logistics installation. This linear program is 
extended to include an “anytime” contingency, where the inventory constraints are formed assuming 
contingency surge demand can occur at any time during the raise, train and sustain cycle. 

The linear program is solved and sensitivity analysis is conducted over variation in CPLT and warning times. 
A further extension of the linear program is developed which includes constraints on bulk delivery lead 
times. 

Finally, we discuss stochasticity in demand, supply and warning times. Inevitability, there is uncertainty in 
each of the aforementioned parameters. To address this, we discuss a two-stage stochastic linear program. In 
this construct, the first stage decisions are the optimal infrastructure capacity; raise, train and sustain 
inventory holdings; and reserve stock inventory holdings. The second stage variables are the procurement 
decisions required to ensure sustainability under different demand, supply and warning time scenarios. 
Approaches to solving the stochastic linear program exactly or approximately through the Monte-Carlo based 
stochastic average approximation algorithm are also discussed.  
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1. INTRODUCTION 

Logistics infrastructure planning has always been critical as an enabler of Defence capability. Given that 
logistics supplies are the life-blood of Defence capability, developing and refining methods to examine 
logistics infrastructure are critical. Developing algorithms and methods that provide advice on logistics 
infrastructure requirements is the subject of this paper.  

The mathematical optimisation technique of linear programming (LP) will be applied in this paper. While 
LPs have been extensively used in logistics planning for decades (Bixby, 2010), the contribution of this paper 
is in its application to Defence logistics requirements. Typically in Defence, logistics infrastructure is 
developed at particular locations based on distinct capability requirements. As an example, the logistics 
infrastructure at a particular location might be formed from the requirement to conduct raise, train and sustain 
(RTS) activities for an air-force squadron. Another example might be the formation of logistics infrastructure 
to meet a contingency requirement at some preparedness or warning time (Stevens and Ingram, 2013). The 
contribution made in this paper is to bridge the nexus between four distinct factors that shape logistics 
infrastructure requirements. 

The first factor is cost minimisation. Planned infrastructure should meet Defence’s requirements, whilst 
minimising costs.  The second factor is to meet baseline logistics requirements. Such requirements are on-
going and include the aforementioned RTS activities at a particular location. The third factor is contingency 
logistics requirements. Defence plans different contingencies with an associated preparedness requirement 
which is specified as a warning time. For some contingencies, Defence should have the logistics capability to 
respond with essentially zero warning time, for example humanitarian and disaster relief operations. Others 
require a considerable work-up time, where significant warning is given. The final factor required in the 
design of Defence logistics infrastructure is resilience. Defence should be able to logistically respond with 
supplies, even in the event of upstream supply chain failures. 

This paper is structured as follows. Section 2 outlines the fundamental differences between Defence and 
civilian supply chains. Section 3 describes the modelling framework in forming a LP formulation for 
infrastructure capacity, holdings and reserves required to meet Defence demands. In Section 4 we discuss the 
formulation of the LP and develop an example. Section 5 introduces uncertainty in each of the modelling 
inputs and discusses a stochastic linear program specifying infrastructure requirements. The final Section 6 
discussions future research directions.        

2. CIVILIAN AND DEFENCE LOGISTICS SUPPLY CHAINS 

For most supplies, such as fuel, food and medical supplies, Defence sources from the civilian supply chain. 
Nonetheless, at what is termed the point of demand, the characteristics of Defence demands are quite 
different from that of typical civilian supply chains. When compared to Defence demands, civilian demands 
can be quite predictable and seasonal in nature. For civilian supply chains it is cost and reliability that are key 
forces shaping contracting decisions on supply. For Defence, logistics contracting must be shaped by 
reliability, resilience and then cost. Here, one should distinguish between reliability, and resilience. A reliable 
supply chain ensures that demands can met be met under most commercial circumstances. Resilience implies 
that demands can be met, even in the event of an upstream supply chain blockage. Table 1 juxtaposes the two 
supply chains at the point of demand.  

Table 1: Differences between civilian and defence supply chains at the point of demand.   

Civilian  Defence 
Moderate to high predictability of demands  Very low to moderate predictability of demands  

No reserves, only cycle stock and safety stock  Reserves, if required, plus cycle stock and safety stock.  
Reasonability smooth seasonal transitions in demand Spike demands with variable warning time  
The cost then reliability but not resilience are key drivers The reliability, resilience, and then cost are the key drivers 

 

Defence does not require that its logistics supply chains meet all demands under all circumstances. Instead, a 
key pillar of defence logistics planning is the notion of preparedness or warning time. Defence should form 
its logistics infrastructure to meet ongoing RTS demands. Over and above these RTS demands; defence also 
specifies preparedness warning times (hitherto known as just warning time) for different scenario demands at 
particular locations (Defence, 2004). The length of the warning time will depend on the scenario. In turn, 
defence cannot demand from civilian supply chains unlimited throughput under all circumstances. Instead 
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Defence bases its supply chain plans from a contingency provisioning lead time, which is defined as that time 
required by industry to supply at the 
required rate specified by scenario 
demands. Such a demand rate is 
termed the surge. Again, depending 
on the logistics item, the 
contingency provisioning lead time 
(CPLT) will vary from a period of 
days, or many months. It is the 
interplay between the warning time 
and the CPLT that is a strong 
determinant of the logistics 
infrastructure and item storage 
required. This is illustrated 
schematically in Figure 1. 

While logistics infrastructure is 
taken as a system of warehouses and 
transport to meet capability 
demands, in this paper we refer to 
such infrastructure as the capacity of 

the defence supply chain node. The capacity will be measured either as units of pallets, or cubic metres, 
depending on the item. Thus the optimisation problem that we solve is to minimise the capacity, inventory 
holdings and reserve stocks, required for a contingency, ensuring both RTS demands, along with contingency 
demands (surge) are met, subject to the supply chain constraints of lead time, maximum order quantities, 
warning times, and CPLT. Reserve stocks are assumed only to be used to cover the supply short fall of 
nominal RTS supplies prior to the CPLT, when supplier surge commences. By minimising the capacity, we 
intrinsically minimise the costs. Given this background we now form the mathematical model.  

3. THE MODELLING FRAMEWORK

The input and decision variables for the optimisation problem are defined in Table 2. 

Table 2: Decision variables of the linear program.  

Variable  Notation Type 
Time and time horizon ݐ = 1,⋯ , ܶ Input 

RTS demand time series ݀ଵ, ݀ଶ,⋯ , ்݀, ݀௧ ≥ 0, ݐ ∈ ሼ1,⋯ , ܶሽ Input  

Warning or preparedness time ܹܶ ≥ 0 Input 

Sustainment period of the contingency ܵܲ > 0 Input 

Surge demand time series ܿଵ, ܿଶ,⋯ , ܿௌ௉, ௝ܿ ≥ 0, ݆ ∈ ሼ1,⋯ , ܵܲሽ Input 

Maximum order quantity ݀max Input 

Maximum surge quantity ݏmax Input 

Lead time for deliveries ܮ Input 

Contingency provisioning lead time  ܶܮܲܥ Input 

Time the contingency starts ߬ ∈ ሼ1,⋯ , ܶሽ Input 

Inventory level at the cycle top at time ݐ 
given the contingency starts at time ߬ 

,(߬)௧௧௢௣ܫ ,ݐ ߬ ∈ ሼ1,⋯ , ܶሽ Decision 

Inventory level at the bottom of the cycle at 
time ݐ given the contingency starts at time ߬ 

,(߬)௧௕௢௧௧௢௠ܫ ,ݐ ߬ ∈ ሼ1,⋯ , ܶሽ Decision 

Initial inventory ܫ଴ Decision 

Infrastructure capacity ܥ Decision 

Reserve stock ܴ Decision 

Nominal RTS procurement ݔଵ, ⋯,ଶݔ , ,்ݔ ௧ݔ ≥ 0, ݐ ∈ ሼ1,⋯ , ܶሽ Decision 

Surge procurement ݏଵ, ⋯,ଶݏ , ,ௌ௉ݏ ௝ݏ ≥ 0, ݆ ∈ ሼ1,⋯ , ܵܲሽ Decision 

Figure 1. Schematic of the Defence infrastructure 
optimisation problem. 
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Time is modelled as days as is the warning time (WT), contingency sustainment period (SP) and CPLT. 
Normal RTS deliveries occur until surge deliveries commence. While normal deliveries occur, during the 
warning time, the logistics vendor is contacted to invoke the surge deliveries. Because the contingency 
(which for the purpose of clarity includes work-up operations to support the contingency) is assumed to start 

at time ߬ the warning occurs at time ߬ −ܹܶ, thus the time that the surge deliveries 
begin is ߬ −ܹܶ +  .ܶܮܲܥ
Now there are three cases to consider in the 
analysis. First the CPLT is less than the 
warning time;  ܶܮܲܥ ≤ ܹܶ. In this case, 
the surge deliveries can begin at the start of 
the contingency. Reserve stocks may still 
be required, but only to cover the shortfall 
between the surge deliveries and the 
contingency demands. Second the CPLT is 
greater than the warning time. In this case, 
surge deliveries start after the 
commencement of the work-up and 
contingency demands. Assuming normal 
RTS supply maxima cannot match 
contingency demands; reserves must cover 
the time-gap, ܶܮܲܥ −ܹܶ, between the 
start of the contingency and the first 
delivery of the surge. Finally, if the CPLT 

is greater than the warning time plus the sustainment period then reserve stocks must supplement normal 
RTS supply alone, to meet the contingency requirements. 

Now some notation is introduced. Let ݐ௦(߬) be the time that the surge deliveries commences, that is ݐ௦(߬) =max(߬, ߬ −ܹܶ +  .(ܶܮܲܥ
Here we assume that if the surge can occur prior to start of the work up, contingency, then this surge 
throughput is still timed to meet the start of the work-up, contingency. It is also assumed that ݐ௦(߬) < ߬ + ܵܲ 
so surge deliveries are actually possible. If not, then a slightly different approach sees only normal deliveries 
and reserves covering contingency demands. Similarly, the end of the surge is termed ݐ௘(߬) with ݐ௘(߬) =
min(߬ + ܵܲ, ܶ). This equation simply states that if the contingency sustainment period extends beyond the 
planning horizon, the last surge delivery is modelled at the planning horizon. The planning horizon, ܶ	can 
easily be extended so this situation does not happen. 

Having defined these equations we are now in a good position to define the inventory level over all times, ݐ 
based on ݐ௦(߬) and	ݐ௘(߬). Here again there are several circumstances. When	ݐ < ߬, that is prior to the start of 
the work-up and contingency, the flow of fuel is as for normal RTS, thus the same inventory dynamics for 
the top and bottom of the cycle apply. No reserve stocks are released at this stage. When ߬ ≤ ݐ <  ௦(߬)  theݐ
work-up and the contingency have started but the surge has not, so the reserves are released to cover the 
shortfall in demand. When ݐ௦(߬) ≤ ݐ <  ௘(߬) then both surge and reserves cover the work-up, contingencyݐ
demands. Finally, when ݐ௘(߬) ≤ ݐ ≤ ܶ normal RTS supply re-commences after the contingency ends.  

We have to define the bottom and top of the inventory cycle, which will be depend on the start of the 
contingency, which we label as ܫ௧௕௢௧௧௢௠(߬) and ܫ௧௧௢௣(߬).	 Assuming supplies can be delivered on the day of
ordering (ܮ = 0), the bottom of the cycle, which is the inventory level just prior to a delivery has the form 

(߬)௧௕௢௧௧௢௠ܫ =
ەۖۖ
۔ۖۖ
ۓۖۖ ௢ܫ −෍݀௜௧

௜ୀଵ +෍ݔ௜	,௧
௜ୀଵ ݐ	 < ߬,

଴ܫ + ܴ −෍ ݀௜ఛିଵ௜ୀଵ −෍ ܿ௜ିఛାଵ௧௜ୀఛ +෍ ௜௧௜ୀଵݔ , ߬ ≤ ݐ < ଴ܫ,௦ݐ + ܴ −෍ ݀௜ఛିଵ௜ୀଵ −෍ ܿ௜ିఛାଵ௧௜ୀఛ +෍ ௜௧ೞିଵ௜ୀଵݔ +෍ ,௜ି௧ೞାଵݏ ௦ݐ ≤ ݐ < ଴ܫ௘,௧௜ୀ௧ೞݐ + ܴ −෍ ݀௜ఛିଵ௜ୀଵ −෍ ܿ௜ିఛାଵ௧೐௜ୀఛ −෍ ݀௜௧௜ୀ௧೐ାଵ +෍ ௜௧ೞିଵ௜ୀଵݔ +෍ ௜ି௧ೞାଵݏ +෍ ௜௧௜ୀ௧೐ାଵݔ , ௘ݐ ≤ ݐ ≤ ܶ.௧೐௜ୀ௧ೞ

		(1) 

If there is a non-zero lead time, (which is distinct from the CPLT), ܮ to deliver the logistics items, ݔ௜ and ݏ௜ 
are simply replaced by ݔ௜ି௅ and ݏ௜ି௅ respectively in the expression for ܫ௧௕௢௧௧௢௠(߬). Though the above 
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expression might look complicated, equation (1) is merely materiel inflows and outflows at the 
aforementioned stages of normal RTS supply, RTS supply plus reserves, surge supply plus reserves, then the 
return to RTS supply post-contingency. The expression for ܫ௧௧௢௣(߬) has a similar form in that the top of the
cycle is the inventory level just after a delivery. For example, the first term for	ܫ௧௧௢௣(߬), when ݐ < ߬ excludes
the demand at time	ݐ, that is ܫ௢ − ∑ ݀௜ + ∑ ௜௧௜ୀଵ௧ିଵ௜ୀଵݔ . 
Having formulated what are the bottom and top of the inventory cycle, the next step is to form the LP. 

4. THE LINEAR PROGRAM FOR AN ANYTIME CONTINGENCY

While the RTS fuel demand pattern will broadly occur in a training cycle, a contingency and its associated 
work-up activities can occur at any time. The LP with such an anytime contingency induces a large number 
of constraints. For each inventory level calculation at time ݐ	the contingency can occur at any ߬ ∈ ሼ1,⋯ , ܶሽ.  
For equation (1), there will 2ܶ constraints, one each for the top and bottom of the cycle at each time. For 
each ߬ (the time that the work-up and the contingency commences) there are ܶ	constraints. Therefore there 
are 2ܶଶinventory constraints and ܶ + ܵܲ constraints ensuring the orders do not exceed the maximal order 
quantities. Finally there are ܶ + ܵܲ + 3 constraints to ensure positivity of the variables. Therefore, the 
structure of the LP looks like this  

minூ೚,஼,ோ,௫భ,⋯,௫೅,௦భ,⋯,௦ೄುܥ + (߬)௧௕௢௧௧௢௠ܫ ܴ > 0, ,ݐ∀ ߬ ∈ ሼ1,2,⋯ , ܶሽ ܫ௧௧௢௣(߬) ≤ ܥ − ૚௧ழఛܴ, ,ݐ∀ ߬ ∈ ሼ1,2,⋯ , ܶሽ ௧ݔ (2)   ≤ ݀max, ݐ∀ ∈ ሼ1,2,⋯ , ܶሽ, ݏ௜ ≤ ,maxݏ ∀݅ ∈ ሼ1,⋯ , ܵܲሽ, ܫ଴, ,ܥ ܴ, ,ଵݔ ⋯,ଶݔ , ,்ݔ ⋯,ଵݏ , ௌ௉ݏ ≥ 0. 
The indicator function ૚௧ழఛwhich is one if ݐ < ߬ and zero otherwise, in the second constraint for the top of 
the inventory cycle ensures that prior to the start of the contingency (ݐ < ߬) the top of the inventory cycle is 
not so large that the reserves cannot be stored within the infrastructure capacity.  

4.1. An example 

As an example of the interplay between the CPLT and the WT, consider the following example based on the 
supply of fuel to an air force fuel 
installation. Orders placed on any given 
day are delivered on that day so ܮ =0. The supply chain can be considered as a
flow of fuel from the fuel industry terminal 
to the air force base. In other examples, the 
fuel vendor may place constraints on the 
minimal order size and there may be 
significant lead times to receive such 
orders, because they are shipped. There is 
also the added complexity for fuel that 
delivery timing will also be determined by 

the tank structure. Generally fuel deliveries 
require an empty on-receipt quality control tank. All the aforementioned complexities can be incorporated in 
the above framework though the addition of extra constraints.        

 At a particular location, an industry vendor can deliver 23x35 kilo litre trucks of fuel per day (805 kilo litres) 
during the RTS cycle. The vendor agrees to supply 100x35 kilo litre trucks of fuel given some specified 
CPLT. The yearly RTS cycle has a minimum demand of approximately 200 kilo litres per day and a 
maximum of 800 kilo litres per day. The contingency demand is estimated to be 3500 kilo litres per day and 
lasts for 8 weeks, as is shown in Figure 3. The vendor agrees that it can supply the surge rate in a CPLT of 6-
9 weeks. The warning time of the contingency is between 1 to 8 weeks. 

Figure 4 graphs the initial inventory holdings and the reserve stock required to meet both RTS and 
contingency demands, and how they are influenced by the warning or preparedness time and the CPLT. One 
can observe that when the warning time is sufficiently large, the actual infrastructure capacity required is 
considerably smaller than for shorter warning times, as a throughput-based or distribution-based logistics 
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solution can be found. When the warning time is small compared to the CPLT, a stockpile bases logistics 
infrastructure solution must be found.  
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Figure 4. Initial inventory and reserve stocks as a function of both the CPLT and warning time. 

5. RESILIENCE AND STOCHASTICITY

While we have considered minimising the capacity, which minimises the cost, it is important to factor in 
resilience to supply chain uncertainties. One approach to doing this is to ensure the bottom of the inventory 
cycle is non-zero and includes some safety stock, analogous to re-order point approaches to inventory 
management. This is easily done by setting the constraint ܫ௧௕௢௧௧௢௠	(߬) ≥  is the standard	ఛߪ ఛwhereߪ݇
deviation of the demand time series, given the work-up, contingency starts at time ߬.  The factor ݇ determines 
that resilience of the system, as in standard inventory theory. Typically, if the underlying demand distribution 
is assumed to be Gaussian, if ݇ = 2,	 then the probability of not stocking out in percentage terms is 97.7% 
(Blumenfeld, 2001).  

Another approach to the development of resilience is to apply the methods of stochastic linear programming 
(SLP) (Sharpiro and Philpott, 2007). SLP is now being used to look at supply chains in the oil industry 
(Dempster et al. 2000). In the discipline of SLP, two sets of decisions are considered in what is termed two-
stage programming. The first sets of decisions, which in the context of this paper are the decisions on 
infrastructure capacity, are made first. A stochastic event occurs which leads to a second set of decisions, 
which in the context of the paper are the fuel purchasing decisions. The stochastic events are called scenarios 
in the parlance of SLP. Each scenario is a time sequence of fuel demands, which may or may not include 
contingency demands with associated warning and contingency provisioning lead times. If we add the 
superscript ܨ௝, ݆ = 1,⋯ ,ܰ to specify a particular scenario, and ܠிೕ,  to be the decision vectors for			ிೕܛ
nominal and surge supply in this scenario then the SLP structure is to minimise the capacity 

minூ೚,஼,ோ,ܠಷభ,⋯,ܠಷ೙,ܛಷభ,⋯,ܛಷ೙ܥ 

where each scenario induces a set of constraints simular to equation (2). The set of scenarios ܰ	may be very 
large or infinite. Here Monte-Carlo simulation is used to sample a subset of scenarios and apply what is 
termed the sample average approximation algorithm (SAA). For a subset of ܯ ≪ ܰ scenarios, the number of 
constraints in the SLP will be	2ܯ(ܶ(ܶ + 1) + ܵܲ) + 3. Clearly, for models over a yearly RTS cycle, and 
multiple samples, the SLP will have large numbers of constraints, testing computational feasibility. 
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Nonetheless, SLP has the advantage of modelling non-Gaussian demand statistics and importantly 
uncertainties in warning time. The application of SLP methods is an important current area of research.    

6. DISCUSSION AND CONCLUSIONS

In this paper, we have modelled linked the link between Defence preparedness or warning times and the 
implications for Defence infrastructure, inventory holdings and reserve stocks. In an era where cost 
optimisation is important, with this analysis, logisticians have the opportunity to carefully examine their 
stockholdings. Often rules of thumb are used by the military to make stockholding decisions. Keeping so 
many days of supply at average RTS demand levels is a simple heuristic. Nonetheless, with the era of modern 
data analytics, we can apply the optimisation methods described, to see whether the heuristic applied is 
sufficient or there is a potential shortfall for some scenarios.  

Research in the application of optimisation for Defence infrastructure has considerable scope for expansion, 
to include stochasticity, combining demand forecasting and optimisation, item perishability, and importantly 
networking. One important conclusion to be made is that Defence planners do not need to necessarily store 
all logistics items required to meet a scenario, if the warning time is large and the supply chain reactive.   
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