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Abstract: The Australian Defence Force is in the process of receiving several new capabilities following 
recent acquisition decisions.  In an era of declining government – and thus military – spending, there is an 
increasing imperative to maximize performance within existing Defence budgets.  Therefore there is a desire 
– indeed obligation – to seek to manage these new aircraft fleets in the most efficient way possible.  In
practice, this translates into areas such as better maintenance processes and increased operational availability. 

In this work we consider a new fleet of 24 MH-60R Seahawk naval combat helicopters being delivered to the 
Royal Australian Navy.  The fleet is required to maintain eight aircraft embarked on ships at sea every day, 
and to achieve a certain number of ashore flying hours (across two squadrons) and embarked flying hours 
each year, over a 30 year life.  Good fleet management would suggest that not only should these three 
primary requirements be met, but also the flying hours across the fleet should be somewhat balanced.  In that 
way, no individual aircraft is too far ahead or below the rest of the fleet regarding total flying hours.  Aircraft 
too far ahead would ultimately have to be retired early, reducing the fleet size.  Similarly, each aircraft should 
have a reasonable split of embarked and ashore hours, as aircraft wear more rapidly when embarked due to 
increased exposure to corrosive salt-laden environments and the higher deployed operational tempo. 

A fleet simulation model has been developed to test the capability of the fleet to meet these requirements. 
The model represents individual aircraft moving between various states, such as between ashore and 
embarked, and between serviceable (able to fly) and different types of maintenance, from regular short 
inspections to depot-level maintenance.  Unscheduled maintenance is included as a random effect, with both 
the time between failures and the repair time represented as probability distributions.  The model also 
incorporates various fleet management policies, to see which are most effective in meeting the three main 
requirements as well as the desire to provide a reasonably balanced fleet.  Six policy types are tested: daily 
flying allocation; daily maintenance allocation; maintenance crew rotations within squadrons; tail rotation 
between squadrons; balancing the flying hours across the fleet; and sharing squadron resources.   

There are a large number of inputs in the model, and while many are fixed, others are more ambiguous, such 
as the range of flying hours that an aircraft and the fleet may fly each day.  When combined with the 
uncertainty in the values of the unscheduled maintenance distributions, as well as the range of fleet 
management policies described above, there is a large parameter space that can be explored.  Given this, a 
simulation experimental design approach has been applied to this problem.  This allows a thorough 
exploration of the parameter space in fewer runs than would otherwise be required.  We apply this design to 
eleven continuous variables, two discrete variables, and the six fleet management ‘policies’ listed above.  
Each of these policies may have between two and five options.  Ultimately, 1040 design points are used, with 
50 replications at each point – by contrast, a full factorial design would require around 1E33 points.   

The results show the strong influence of varying unscheduled maintenance on the ability of the fleet to meet 
the ongoing requirements, particularly if the frequency is greater than anticipated.  It also demonstrates that 
particular fleet management policies, such as those that share squadron resources and rotate maintenance 
crews within squadrons, can be used to counteract an increase in unscheduled maintenance.  For the 
requirements to balance the embarked, ashore and total flying hours across the fleet, tail rotation policies that 
enable more frequent rotations are most effective overall, especially for balancing embarked hours.   

Overall, the experimental design technique provides insights to decision makers.  In this fleet management 
example, it identifies the variables and policies of greatest influence.  It thus assists decision makers in 
determining the best policies, and targeting the areas that may negatively impact on meeting requirements. 
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1. INTRODUCTION 

This century, the Australian Government has acquired, or decided to acquire, several different new military 
capabilities for the Australian Defence Force (ADF).  These include 72 F-35 Joint Strike Fighters (due to 
enter service in 2020), 24 F/A-18 Super Hornets (announced in 2006), and 24 MH-60R Seahawk naval 
combat helicopters (chosen in 2011).  Each of these capabilities is expected to operate for 20-30 years.   

In this era of high government debt and reduced spending (including military) around the world, the drive for 
finding greater efficiencies within existing Defence budgets is high.  Several years ago the Australian 
Government released the Strategic Reform Program (Commonwealth of Australia, 2009) with the intent to 
fund future Defence capability purchases through internal departmental savings of $20 billion over 10 years.  
Target areas include “logistics” and “smart sustainment,” with some of the aims of “improving…operational 
availability” and “improved maintenance processes.”  Thus the need, indeed imperative, to maintain these 
newly-acquired capabilities in the most efficient way becomes paramount.   

Most military aircraft fleet management work in the literature seeks to examine short-term planning and 
scheduling problems, using techniques such as mixed-integer linear programming (e.g., Hahn & Alexander, 
2008; Kozanidis et al., 2012) or simulation-optimisation (e.g., Mattila & Virtanen, 2014).  The aims of this 
work are: 1) to test various fleet management policies over an entire fleet life (in this case, for the incoming 
MH-60R fleet) to ascertain which are the most robust to a range of circumstances; and 2) to determine which 
model input values have the most influence on the results.  To accomplish this, we use a simulation model of 
the fleet (described in Section 2), coupled with simulation experimental design techniques (Section 3). 

2. AIRCRAFT FLEET SIMULATION MODEL 

2.1. Overview 

The aircraft fleet simulation model used here extends an earlier fleet sizing model (Marlow & Novak, 2013).  
It represents a fleet of aircraft moving between various states over the fleet life.  Aircraft may be serviceable 
(able to fly), in various types of maintenance, or other states, and move from one state to another when 
certain criteria are met.  Aircraft may be embarked on ships, ashore at home base, or deployed for short 
periods for training.  The model also includes changeover periods (when aircraft move between being 
embarked and ashore) and stand-down/holiday periods for the workforce.   

The model includes various levels of scheduled maintenance: regular inspections, phased maintenance, and 
deep or depot-level maintenance.  Regular inspections may be weekly and take 1-2 days; phased maintenance 
will occur after a certain number of flying hours and may take days or weeks; and deep maintenance will take 
place every few years and last weeks or months.  The model also includes unscheduled maintenance, 
represented as probability distributions for both time between failures and time to repair.  There are three 
different types of maintenance facility: 

• Flight line maintenance lines.  These handle regular inspections, and repairs on serviceable aircraft that 
have subsequently failed due to unscheduled maintenance; 

• Phased maintenance lines.  Along with aircraft in phased maintenance, unscheduled maintenance may 
need to be performed on these aircraft.  Minor modifications may also be applied here. 

• Deep maintenance lines.  These facilities are operated by contracted rather than military personnel, and 
aircraft undergoing deep maintenance or major modifications will be serviced there. 

An extension in this work (from that of Marlow & Novak, 2013) is that two squadrons are considered.  One 
is an ‘operational’ squadron, responsible for embarking aircraft and preparing crews for such deployments.  
The other is a ‘training’ squadron, where crews are sufficiently trained in order to ultimately perform duties 
in the operational squadron.  Each squadron has their own aircraft, along with maintenance facilities and 
personnel.  The operational squadron has a small ashore component for both aircraft and maintainers, and 
otherwise is responsible for achieving all embarked requirements.  The training squadron will solely achieve 
ashore hours, with any hours flown while undergoing training exercises counted towards this requirement. 

2.2. Measures of Effectiveness 

The three primary Measures of Effectiveness (MoEs) for this work are: 1) percentage of time that the 
minimum embarked aircraft requirement (eight aircraft each day) is not met; 2) annual embarked hours 
achieved; and 3) annual ashore hours achieved.  These measures are the same as those for the earlier fleet 
sizing work (Marlow & Novak, 2013).  With the inclusion of multiple squadrons, each squadron must also 
meet its own requirements. 

918



Marlow et al., Testing aircraft fleet management policies using simulation experimental design  

A further consideration is not just whether the fleet flying hours are being met, but how they are being met.  
Ideally, the fleet would have a range (minimum to maximum) of flying hours that facilitates a phased 
withdrawal from service, in the same way that a fleet has a phased introduction to service.  Having individual 
aircraft with total flying hours too far ahead of the rest of the fleet may ultimately force that aircraft to retire 
early, thus impacting the fleet size.  Each aircraft should also have a balance of embarked and ashore hours, 
in order to equalise the exposure to embarked conditions: e.g., corrosive salt-laden environments and a higher 
operational tempo.  Consequently, further MoEs are added in this work, these being the mean, standard 
deviation and range of embarked, ashore and total hours for the fleet. 

2.3. Fleet management policies 

In order to try to meet the various MoEs, various policies are tested to see which policies or combinations of 
policies are most effective.  The six policy types are described below. 

Flying allocation 
Flying allocation policies are used to determine which serviceable aircraft fly each day, and how many hours 
they fly.  Two policies are chosen, as in Marlow & Novak (2013): 

• Maximise serviceability (‘serv’) flies each aircraft at the ratio of: hours until its next phased service, to 
days until the next phased maintenance line becomes free.  It starts with the aircraft with the fewest hours 
until its next phased service, and so on for the aircraft with the second-fewest hours.  However, this 
policy does not ensure that the daily requirement (based on the annual requirement) will be met. 

• Greedy policy (‘phG’) directly seeks to achieve the required daily flying hour requirement, by choosing 
the aircraft with the least number of hours until their next phased service and flying it to the maximum 
daily rate, and then the aircraft with the second-least hours, and so on, until the requirement is met.   

Maintenance allocation 
Maintenance allocation policies determine which aircraft in various types of maintenance have manpower 
applied to them.  Three options are chosen: 

• Greedy flight line maintenance (‘fltG’) seeks to allocate manpower to aircraft in flight line maintenance, 
starting with the least number of maintenance manhours (MMH) remaining until they become serviceable 
(up to the maximum per aircraft per day), then the aircraft with the second least hours, etc. 

• Greedy flight line and phased maintenance policy (‘G’) is as above, although the method is also applied 
to aircraft separately in both flight line maintenance and phased maintenance.  

• Greedy squadron policy (‘sqnG’) is as above, except in this case all of the squadron aircraft in flight line 
and phased maintenance are pooled and sorted, and the greedy method applied. 

Maintenance crew rotation 
Maintenance crew rotations allow manpower to be transferred between the flight line maintenance and 
phased maintenance areas under particular circumstances.  Here a ‘norot’ policy represents no rotations, 
whereas the ‘rotP’ policy allows rotations, depending on the number of empty maintenance lines at each area.  
For example, if one area has all lines empty, all of that manpower may be utilized in the other area. 

Tail rotation 
Tail rotation policies allow an individual aircraft to move between squadrons.  The aim is to attempt to 
balance the embarked hours across the fleet.  The model considers three options: no rotation (‘none’); 
rotation following deep maintenance (‘DM’); or rotation after scheduled (phased or deep) maintenance 
(‘sch’).  This also requires some variation in the maximum number of available aircraft in each squadron.   

If, following a maintenance type listed above, an aircraft is in the operational squadron and has more 
embarked hours than the fleet average, it can be rotated into the training squadron.  Similarly, an aircraft in 
the training squadron that has less embarked hours than the rest of the fleet may be rotated into the 
operational squadron.  Rotations can be forced or banned if the allowed squadron size is or will be breached.   

Balancing fleet flying hours 
Policies to try to balance the total flying hours across the fleet are implemented when allocating daily ashore 
flying and maintenance resources.  The balance flying hours policies directly consider the total number of 
flying hours per aircraft.  For flying allocation policies, a serviceable aircraft that has less total flying hours 
than another will be prioritized.  In the ‘serv’ and ‘phG’ flying allocations, an aircraft with less total flying 
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hours, but more hours until the next phased service, will be prioritized over an aircraft with more total flying 
hours, but less hours until its next phased service.  The intention is to hold back aircraft with too many flying 
hours, and push forward aircraft with too few.  Similarly, with the maintenance allocation policies, aircraft 
with less total flying hours, but more manhours until they become serviceable, will be prioritized over those 
aircraft with more total flying hours, but less manhours required until they become serviceable.   

The policies provided in this work are either no attempt (‘none’), or based on either trying to keep total flying 
hours within a certain range, e.g., 500, 1000 or 1500 hours (‘f500’, ‘f1000’, f1500’), or within one standard 
deviation of the mean (‘f1stdev’).  The policies are applied when aircraft are outside of these ranges. 

Sharing squadron resources 
The aim of squadron sharing policies is to improve resource use across the fleet.  Resources can be swapped 
as required (‘need’) if one squadron has met its requirements and has spare resources; and the other squadron 
has not met its requirements and has used all of its resources.  Both maintainers and aircraft may be swapped.  
Spare maintainers in one squadron can provide extra manpower to the other squadron, reducing maintenance 
times.  Similarly, spare aircraft in one squadron can assist the other in meeting its daily flying requirements. 

3. DESIGNED SIMULATION EXPERIMENTS  

Clearly, the number and variety of inputs to this model have the potential to yield complex behaviors and a 
very large number of combinations need to be considered. We do so with “data farming” – a term that has 
been used in the Defence community for over a decade to capture the notion of purposeful data generation 
from simulation models.  It is different from data mining in much the same way that farming differs from 
mining.  Miners seek to separate out valuable nuggets from their less valuable surroundings; data miners seek 
valuable information from large volumes of data.  By contrast, farmers modify the growing conditions to 
promote the greatest yield obtainable from their resources; data farmers use designed experimentation to 
maximize the information obtainable from a limited set of simulation experiments.  An additional benefit of 
data farming is that designed experiments are performed prospectively. Unlike observational data used in 
data mining, which can only note correlations, designed experiments can legitimately identify root cause-
and-effect relationships between the input factor settings and the resulting outcomes.  Using modern large-
scale designs developed within the last decade, we can now explore massive input spaces and their 
relationship to complex simulation response surfaces. Data farming has enabled quantum leaps in the 
breadth, depth, and timeliness of the insights that can be obtained from simulation models.  

To illustrate the basic concepts of designed experiments, consider the notional results of a “capture the flag” 
simulation shown in Figure 1. Green squares, yellow triangles, and red balls represent good, medium, and 
bad outcomes, respectively. The two designs in Figure 1 have serious drawbacks, but are sadly 
representative of the way many simulation studies are conducted.  In the first case, the factors have been 
varied in such a way (called confounding) that it is impossible to separate the effects of speed and stealth.  In 
the second, when the factors are 
varied separately from each other, 
some may conclude (incorrectly) 
that neither speed nor stealth is 
important.  However, putting them 
all together as in Figure 1(c) shows 
an interaction—there is a 
possibility of winning if both speed 
and stealth are varied 
simultaneously. The designs in 
Figure 2 all allow interactions to 
be studied, but have different 
strengths and weaknesses.  The 22 
factorial (1(c)) has only 22=4 
design points, but does not reveal 
the behavior except in the corners 
of the factor space.  The 112 
factorial (1(d)) provides a wealth 
of information, but at the cost of 
112=121 design points. The Latin 
hypercube (LH) design (1(e)) 
provides an intermediate level of 
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Figure 1. An illustration of bad (a-b) and good (c-e) experimental 

design using the “capture the flag” example 
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information with only 11 design points.  The benefits of efficient designs, including LH designs, are even 
more dramatic when investigating large numbers of factors, while a brute-force approach quickly falls victim 
to the curse of dimensionality. Further details and references on designing large-scale simulation experiments 
are available (Sanchez et al., 2012; Sanchez & Wan, 2012).  

4. FLEET SIMULATION MODEL DESIGN 

As stated in Section 1, the aim of this experiment using the aircraft fleet simulation model is to test not only 
the most effective policies, but determine the most influential variables.  We use notional input data and 
requirements, as our intent is to demonstrate the utility of the methodology.   

4.1. Inputs 

For this experiment, there are 19 input 
variables: 11 continuous, 2 discrete, and 6 
categorical.  The 6 categorical variables are 
the various policy options described in 
Section 2.3.  The chosen continuous and 
discrete variables and their values are 
provided in Table 1.  Most of these 
variables are directly controllable in 
practice, with the exception of unscheduled 
maintenance (but which has controllable 
aspects).  The daily increase allowance 
represents the amount by which the daily 
flying rate can be increased over the pro 
rata rate, where the pro rata rate, if 
followed, would allow the ashore aircraft to 
meet the annual requirement.  The minimum 
maintenance duration represents the value 
above which an aircraft would need to be 
removed from service for at least a day.  All 
other variable names are self-evident. 

A number of other model inputs are not 
varied.  These include the three primary requirements: for the fleet to have eight aircraft embarked every day 
of the fleet life, and achieve 4000 embarked hours and 4000 ashore hours each year.  Other inputs include 
maintenance manpower rates-of-effort, time between services, and time to repair.  Lognormal distributions 
are used for both the time between failures and the duration of unscheduled maintenance. 

4.2. Design  

We use a custom nearly orthogonal-and-balanced design (Vieira Jr. et al., 2013) with 1040 design points for 
the 19 factors, with 50 replications at each design point. Continuous factors are varied at 512 distinct levels. 
The near-orthogonality is beneficial for analysis; the design has good space-filling behavior for the 
continuous factors, and samples the levels of each discrete or categorical factor in roughly equal proportions. 
The total set of runs took 34 hours on a single Mac pro with a 12 core Xeon E5 processor, capable of running 
24 threads. Had we attempted a full factorial experiment, the number of design points that would have been 
required for comparable numbers of levels is 6.19E33.  Even if we limited the continuous-valued factors to 
10 levels each, a full factorial would have 9.27E14 design points—and would keep our machine busy for 
over 3.5 million years.  Clearly, efficient designs have made it possible to run and analyze experiments that 
would otherwise be unthinkable. 

5. RESULTS 

The results can be analysed using a range of statistical techniques such as regression and partition trees (see, 
e.g., Hand et al., 2001).  These are used to determine the most influential factors on the MoEs.  Given the 
space constraints, a summary table only showing the factors that directly impact the results, either 
individually or via interactions, is shown in Table 2.   

Table 1. Quantitative factors for simulation model 
experiment (notional data) 

Variable Values 
Maximum ashore tail daily flying rate (fly hrs) 3-10 
Minimum ashore tail daily flying rate (fly hrs) 0.5-1 
Maximum total daily flying rate (sqn 1) (fly hrs) 10-20 
Maximum total daily flying rate (sqn 2) (fly hrs) 25-35 
Daily increase allowance (%) 0-1*pro-rata 
Maximum embarked daily flying rate (fly hrs) 3-10 
Minimum embarked daily flying rate (fly hrs) 0.5-1 
Unscheduled maintenance mean time between 
failures (days) 

0.8-1.2*mean 

Unscheduled maintenance mean duration (days) 0.8-1.2*mean 
Maximum ashore daily maintenance (man 
hours/day) 

50-100 

Minimum maintenance duration (man hours) 5-20 
Maximum variation in number per squadron 0-2  (discrete) 
Maximum days idle for serviceable aircraft 2-10 (discrete) 

 

921



Marlow et al., Testing aircraft fleet management policies using simulation experimental design  

The most striking feature of the analysis is the impact of variable unscheduled maintenance on the results for 
the three primary MoEs and the mean results for the tail hours distributions.  A reduction in time between 
failures (and thus an increase in frequency), coupled with an increase in duration leads to a large increase in 
unserviceability and thus a reduced ability to meet the annual ashore hours requirement, and in turn the 
embarked requirements.  However, the sheer magnitude of its influence compared to other factors is notable.  
Unscheduled maintenance data for a new capability are difficult to predict, and these results suggest that an 
estimate that is incorrect by 10-20% may lead to a serious decrease in performance.   

The influence of the various fleet management policies can be observed at various levels.  For the less than 
percentage minimum embarked MoE, using the ‘need’ squadron sharing heuristic can help to reduce the 
impact of unscheduled maintenance, in some cases by a factor of 2.  Similarly, for meeting the annual 
embarked hours requirement, the results suggest that increasing the maximum daily embarked flying rate can 
help to offset the reduced serviceability levels from increasing unscheduled maintenance.  For meeting the 
annual ashore hours requirement, even with a higher frequency of unscheduled maintenance, using crew 
rotation and squadron sharing policies can allow this requirement to be achieved to within 1%.  In each case 
the policies that encourage greater sharing or allocation of resources prove to be most effective.  The ‘need’ 
squadron sharing policy and the ‘rotP’ crew rotation policy are preferred to no action. 

For the range results, the tail rotation and balance flying hours policies have their greatest influence, as they 
are designed to address these issues specifically, whereas the other policies are designed to help meet the 
overall requirements.  The results indicate that the tail rotation policies for embarked aircraft have the 
greatest influence.  If no tail rotation policy is implemented, then only aircraft in the operational squadron 
will accrue embarked flying hours, leading to a fleet-wide imbalance.  The effect of tail rotation policies 
therefore overwhelms that of any balance flying hour policies.   

For balancing the embarked hours, the 
‘sch’ tail rotation policy is preferred to 
the ‘DM’ and ‘none’ policies.  Tail 
rotation after scheduled maintenance 
allows more opportunities for rotations 
to occur, and thus more flexibility in 
allowing the fleet to balance the 
embarked hours.  This is shown starkly 
in Figure 2.  While the maximum mean 
values are reached by all three policies, 
the desired lower range values are 
attained primarily through policies that 
permit greater rotation.  Allowing a 
greater variation in the number of 
aircraft per squadron also facilitates 
more opportunities for embarked hours 
to be balanced. 

Table 2. Summary of results showing the influential factors on various MoEs based on contributions to R2. 
Categories determined by inverse powers of 2; VS is used for a very strong influence (>0.25), S for strong 

(>0.125), M for moderate (>0.0625), W for weak (>0.03125), and VW for very weak. 
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mean 
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tail hr 
mean 

Total 
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Maximum ashore tail daily flying rate  VW    VW    
Maximum embarked daily flying rate    S S      
Unscheduled maintenance time btw fails  VS VS VS VS  VS  VS  
Unscheduled maintenance duration S S S S  S  S  
Maximum variation in number/sqn     M  M  W 
Maintenance crew rotation policies  M    M  W  
Tail rotation policies     VS  VS  VS 
Balance flying hour policies       W  W 
Squadron sharing policies W VW        
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Another interesting result is the fact that 8 of the 13 continuous and discrete variables in the experiment, as 
well as 2 of the 6 policies, have no significant impact overall.  Along with the influential variables, a decision 
maker can combine these results to prioritise resources into the areas of most importance. 

6. DISCUSSION AND CONCLUSIONS 

This paper has demonstrated the utility of simulation experimental design techniques.  Using a greatly 
reduced number of runs compared to a full factorial design, combined with various statistical methods, the 
most influential factors on the MoEs have been found.  For this particular application to aircraft fleet 
management (noting the invented scenario), the tremendous influence of unscheduled maintenance has been 
revealed.  From a practical viewpoint, this suggests that major efforts should be made to reduce its impact, 
through seeking to reduce maintenance frequency (e.g., through risk mitigation) and durations (e.g., by 
increasing manpower).  It also demonstrates that particular fleet management policies can be applied that 
either provide superior solutions to some MoEs (e.g., the choice of policy to reduce the range of flying hours 
across the fleet) or assist in raising the overall annual flying hours (e.g., through maintenance crew rotations).   

A limitation of this work is that it seeks to apply the same policy for the entirety of the fleet life.  In reality, it 
may well be a case of ‘horses-for-courses,’ in that particular policies work best for particular situations at 
various times over the fleet life.  Additional work is being undertaken in this area to find the best policies 
under those particular circumstances, using various simulation-optimisation approaches.   
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