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Abstract: This paper proposes a unified framework to study the theoretical properties of forecast combination.
By setting up the forecast combination problem as a panel data model, the paper obtains the necessary and
sufficient conditions for optimal weight as well as the necessary and sufficient conditions for the simple average
to be the optimal weight under Mean Squared Forecast Errors (MSFE). These conditions are consistent with
existing results in the literature but the derivations are much simpler due to the proposed framework. In
addition to existing results, this paper also establishes two useful theoretical results. First, it derives the
necessary and sufficient conditions for a single model to outperform simple average of forecasts. As argued in
the paper, it is unlikely that any individual model would satisfy these conditions in practice and therefore, it
explains the empirical observation that simple average of forecasts often outperforms any single model. More
importantly, it provided a theoretical explanation on the superiority of forecast combinations, at least in the
MSFE sense. Second, the paper also shows that the MSFE of simple average of forecast decreases as the
number of model increases. This implies that a single model is unlikely to be superior over simple average of
forecasts if the number of models increases in the combination.

This paper shows that the proposed framework is also useful in studying the forecast combination puzzle. The
paper verifies the existing view that the puzzle may be a result of estimation error in the optimal weight but
more importantly, it identifies an additional cause of the puzzle. Specifically, the MSFE may be an inconsistent
estimator of the forecast variance and thus, it may produce inconsistent results on the forecast performance
of different models with different weighting schemes. A series of Monte Carlo experiments provided over-
whelming support of this explanation. An important implication of this results is that selecting optimal model
based on naı̈ve comparison of MSFE values without further statistical test may produce inconsistent results.
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1 INTRODUCTION

In the literature on forecasting, several studies have provided insightful discussions on forecast combination.
However, theoretical results on forecast combination have been derived with different techniques or under
different assumptions. Consequently, it is unclear from that body of literature if there are deeper connections
underlying these different theoretical results.

This paper proposes a unified framework to analyse the theoretical properties of forecast combination. The
framework simplifies the derivations of existing results and shows that they can be derived with ease. More
importantly, the framework provides a solid foundation to study forecast combination and leads to further
insight into the theoretical properties of forecast combination. Specifically, this paper provides the necessary
and sufficient conditions on the optimal weight that minimises the Mean Squared Forecast Errors (MSFE).
This result also yields the necessary and sufficient conditions for the simple average to be the optimal weight.

This paper also establishes the necessary and sufficient conditions that allows forecasts of a single model to
outperform the simple average of forecasts in the MSFE sense. By defining the difference in MSFE as a
simple bilinear form, it is trivial to demonstrate that these conditions rarely hold in practice and thus the result
provides a simple theoretical justification on the superiority of forecasts from averaging models over single
models. This confirms the findings from the seminal paper by Bates and Granger (1969). The result also
suggests that the MSFE of any affine forecast combination decreases as the number of model increases under
a mild set of assumptions.

Third, it provides a theoretical investigation on forecast combination puzzle, namely why forecast combination
using simple average often outperforms complicated weighting schemes in the MSFE sense. This puzzle
was first raised in Clemen (1989) and formally named “forecast combination puzzle” by Stock and Watson
(2004). Recent studies, such as Smith and Wallis (2009) and Claeskens et al. (2014), have argued that the
forecast combination puzzle is due to the presence of finite sample errors from estimating the optimal weights.
Specifically, Smith and Wallis (2009) suggests that the simple average forecast combination beats complex
weighting scheme with respect to MSFE partly because the weights have to be estimated, which contains
finite sample errors. Claeskens et al. (2014) follows in the footsteps of Smith and Wallis (2009) and shows that
when the weights need to be estimated the forecast combination is biased and the variance of the combination is
larger than in the fixed-weights case such as the simple average. Other and earlier explanations pointing to the
estimation error as the source of the problem include Clemen and Winkler (1986), which investigates parameter
instability as the underlying motive for error, Hendry and Clements (2004) that considers discrete shift in
the data generating process and forecasting models that are misspecifed, and also in Aiolfi and Timmermann
(2006). Elliott (2011), on the other hand, investigates the hypothesis that the size of the gains from combination
are outweighed by the estimation error. Furthermore, Elliott (2011) examines the sizes of the theoretical gains
to optimal forecast combination and provide the conditions under which averaging and optimal combination
are equivalent.

These results can be easily derived from the proposed unified framework. More importantly, this paper iden-
tifies another cause of the puzzle. Specifically, it shows that the calculation of MSFE is merely a variance
estimator of the forecast errors, which may not be consistent. Subsequently, selecting optimal model based on
naı̈ve comparison of MSFE without further statistical testing will lead to biased results.

2 FRAMEWORK AND ASSUMPTIONS

This section introduces the framework and the assumptions to analyse the theoretical properties of forecast
combination. Let fit denotes an unbiased 1. Their forecasts of a variable of interest yt for model i, where
i = 0, · · · , k, at time t then

yt = fit + νit i = 0, · · · , k, (1)

where νit are the forecast errors. Without loss of generality, let f0t be the “best” unbiased forecast of variable
yt, based on the forecast criterion g (fit) such that E [g (ν0t)] < E [g (νit)] ∀i = 1, · · · , k, where E (·) is the
expectation operator. Let uit = ν0t − νit and rearranging equation (1) gives

fit = yt − ν0t + uit i = 1, · · · , k. (2)
1The assumption of unbiasedness is made for mathematical convenience. Using the regression approach proposed in Granger and Ra-
manathan (1984), Hsiao and Wan (2014) presented a convenient way to accommodate biased forecasts in studying forecast combination.
While it is straightforward to incorporate such approach here, it does not change the implications of the theoretical results but it increases
the algebraic complexity substantially.
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This framework decomposes the prediction errors νit into two parts. The first part ν0t represents the prediction
error from the best model and the second part, uit, represents the difference in prediction errors between the
best model and model i.

Following the standard practice, this paper focuses on the matrix version of equation (2). Let Y =
(y1, · · · , yT )

′, ft = (f1t, · · · , fkt)′, F = (f1, · · · , fT )
′, F0 = (f01, · · · , f0T ) and u = (u1, · · · ,uT )

′ with
ut = (u1t, · · · , ukt)′, νννt = (ννν1t, · · · , νννkt)′ with ννν = (ννν1, · · · , νννT )

′ and ννν0 = (ν01, · · · , ννν0T )
′. Equation (2)

can be written in matrix form as

F = (Y − ννν0)⊗ i′ + u (3)

where i denotes a k×1 vector of ones and⊗ denotes the Kronecker product. Forecasts for t = 1, · · · , T based
on a linear combination of forecasts from the k models is therefore

Fa = Yi′a− ννν0i′a + ua. (4)

If a is an affine combination, i.e. i′a = 1, then ννν0 + ua is a T × 1 vector containing the forecast errors from
the forecast combination. If a does not represent an affine combination, then Fa does not produce unbiased
forecasts, since E (Fa) = E (Y) i′a under the standard assumptions that E (ν0t) = E (uit) = 0 for all i and t.
It is for this reason that only affine combination of forecast are considered.

This framework is flexible enough to produce simple and complex forecast combination models. For example,
Bates and Granger (1969) presented a simple combination model for two competing forecasts: fct = af1t +
(1 − a)f2t with forecast error νit = yt − fit, i = 1, 2. This simply implies that ft = (f1t, f2t)

′ and a =
(a, 1− a)′ in (4) and typically 0 ≤ a ≤ 1.

Unless otherwise stated, this paper assumes the following:

Assumption 1. ν0t ∼ iid
(
0, σ2

ν

)
.

Assumption 2. E (ut) = 0 and E (utu
′
t) = ΩΩΩ for all t where ΩΩΩ is a bounded matrix.

Assumption 3. E [g (uit) f (ν0t)] = E [g (uit)]E [f (ν0t)] for all i = 1, · · · k and any functions g and f .

3 OPTIMAL WEIGHTS AND AVERAGES

This section applies the framework introduced in the previous section to derive several theoretical results. This
includes the necessary and sufficient conditions for optimal weight under MSFE as well as the necessary and
sufficient conditions for a single model to outperform simple average of forecasts. While the former is well
known in the literature, the latter is new.

The theoretical results presented in this section focus on forecast combination with optimal weights. The
following discussion assumes that the forecast criterion is MSFE as commonly chosen in the forecast literature,
which implies that g : R→ R+ is a differentiable function. That is:

g (νit) = T−1ννν′iνννi

where νννi = (νi1, · · · , νiT )
′. Thus, the MSFE of a forecast combination, σ̂2

a, based on the weight vector, a,
and ννν is

σ̂2
a = g (νννa) = T−1 (ννν′0ννν0 + a′u′ua) (5)

The last line follows from the restriction that i′a = 1. Note that E
(
σ̂2
a

)
= E [g (νννa)] = σ2

ν + aΩΩΩa =
σ2
a. Equation (5) also provides a natural and practical estimator for ΩΩΩ. However, its consistency relies on
T−1u′u−ΩΩΩ = op(1), which may not be true depending on the memory structure in u. As discussed before, u
is likely to be serially correlated in the time series context and further assumption on u would then be required
to ensure Ω̂ΩΩ is a consistent estimator for ΩΩΩ.

It is straightforward to derive a set of optimal weights by minimising the forecast error variance as first intro-
duced by Bates and Granger (1969). The k × 1 vector of optimal weight a is the solution to the following
optimisation problem:

a = arg min
x

σ2
a = x′ΩΩΩx + σ2

ν s.t. i′x = 1. (6)
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This can be solved by analysing the associated Lagrangian function which implies:

ΩΩΩa (a′ΩΩΩa)
−1

= i. (7)

Given the convexity of the objective function and the linearity of the constraint, equation (7) provides the
necessary and sufficient condition to derive the optimal weight vector, a. Note that ΩΩΩνa (a′ΩΩΩνa)

−1
= i

implies ΩΩΩa (a′ΩΩΩa)
−1

= i, under the constraint i′a = 1. It is thus straightforward to show that the closed form
solution for the optimal weight vector does indeed satisfy equation (7). This closed form solution is in fact
derived in Elliott (2011, p.5), which generalise Bates and Granger (1969).

The first observation from the above optimisation is that a does not depend on σ2
ν . An immediate consequence

is that forecast combination under affine combination cannot perform better than the best model. This is
obvious from the objective function since ΩΩΩ is positive semi-definite and therefore x′ΩΩΩx ≥ 0 for all x. Thus,
the role of the optimal weights is to minimise the additional variance due to the deviations from the best
model. Interestingly, this observation is not restricted to affine combination of forecasts, it also applies to
linear combination of forecasts in general. As shown in the following proposition, forecasts based on linear
combinations of k competing models cannot outperform the best model in the MSFE sense.

Proposition 1. x′ΩΩΩνx ≥ σ2
ν for all x ∈ Rk.

Proposition 1 also suggests that ΩΩΩ contain all the necessary information to analyse forecast combination prob-
lems with respect to MSFE and hence equation (7) is often more convenient than the closed form solution as
stated in Elliott (2011).

Proposition 2. The simple average is the optimal weight if and only if ΩΩΩi = k−1i (i′ΩΩΩi).

The proof of Proposition 2 is trivial from equation (7). There are some interesting implications of this result.
First, it is obvious that if ΩΩΩ = σ2I for some σ2 < ∞ then ΩΩΩ satisfies the condition in Proposition 2 and
therefore the simple average will be the optimal weight. This implies that all deviations from the best model
are uncorrelated with each other while the forecasts errors share the same correlation between each model.
This is due to the fact that the variance-covariance matrix of the forecast errors is ΩΩΩν = σ2

ν ii
′ + a′ΩΩΩa. This

result is consistent with the one derived in Aiolfi and Timmermann (2006). Furthermore, Hsiao and Wan
(2014) also provide a necessary and sufficient condition where the simple average is an optimal combination.
This condition covers the possibility that some of the models may produce biased forecasts, which would
require to estimate a scaling constant.

The second observation is that if the deviations from the best model are not correlated with each other but the
variances of the deviations are different then the simple average average will not be the optimal weight but it
is still likely to perform better than any single model. In order to formalise this claim, this paper proposes the
following bilinear form:

dV (x, z;ΩΩΩ) = (x + z)
′
ΩΩΩ (x− z) = x′ΩΩΩx− z′ΩΩΩz. (8)

where x = (x1, ..., xk)
′ and z = (z1, ..., zk)

′ are two affine forecast combinations such that dV represents
the difference in forecast variance between the two affine combinations. The weights vector under simple
averaging is z = 1

k i, which means that the difference in forecast variance between any affine combination x
and the simple average can be expressed as

dV
(
x, k−1i;ΩΩΩ

)
=

(
x +

i

k

)′
ΩΩΩ

(
x− i

k

)
.

Hence, the forecasting performance of any affine forecast combination relative to the simple average can be
analysed by examining the sign of the bilinear form as defined in equation (8). Note that the relative efficiency
depends solely on the variance-covariance matrix of the random deviations from the best model. This is a
sequence of affine combination and has some important implications.

Recently, Smith and Wallis (2009) and Claeskens et al. (2014) have demonstrated that the reason for the poor
performance of optimal weights relative to the simple average in applications is tied to the effect of estimation
errors, at least in the MSFE case. This facts can be simply demonstrated by using the bilinear form. Let
âT = a + εεεT be an estimator of a where εεεT denotes the estimation error of a from a finite sample of T
observations. So that the bilinear form can be written as

dV =

(
âT +

i

k

)′
ΩΩΩ

(
âT −

i

k

)
= dV0 + εεεTΩΩΩεεεT . (9)
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where dV0 =
(
a + i

k

)′
ΩΩΩ
(
a− i

k

)
< 0. Since ΩΩΩ is positive semi definite, εεε′TΩΩΩεεεT ≥ 0, and therefore dV can

be greater than 0 if εεε′TΩΩΩεεεT > |dV0|. That is, the simple average can outperform the estimated optimal weight
if the estimation error of the optimal weight is large. This is consistent with the result given in Claeskens et al.
(2014). If εεεT = op(1), it implies that εεε′TΩΩΩεεεT = op(1) by the Continuous Mapping Theorem. Thus, dV based
on estimated weight will converge in probability to dV0. However if εεεT is not op(1) or has a very slow rate of
convergence, then dV may be severely biased in finite and small sample, respectively.

This also corroborates the findings of Smith and Wallis (2009) that the reason for the poor performance of
optimal weights relative to averaging in finite sample is tied up with the estimation error generated when
estimating the weights. The properties of forecast combinations with optimal weights are derived under the
assumption that the combination weights are fixed and ignore that the weights have to be estimated. Claeskens
et al. (2014) provides the theory that shows that when accounting for the optimal weights estimation, the
forecast combination can be biased and its variance larger than assuming the weights are fixed.

The current framework provides an insight on the source of the estimator error. The computation of the optimal
weight often involves ΩΩΩ which is usually not known in practice and therefore it must be estimated based on
the forecast errors from individual models, namely, νit = ν0t + uit. Recalled a natural estimator for ΩΩΩν
is Ω̂ΩΩν as defined in equation (5), which is consistent if T−1ννν′0ννν0 − σ2

ν = op(1) and T−1u′u − ΩΩΩ = op(1).
While the convergence of T−1ννν′0ννν0 is ensured by Assumption (1), the convergence of T−1u′u requires further
assumption due to possible serial correlation in uit. Moreover, even if the appropriate conditions are satisfied,
T is generally small and therefore, estimation errors are likely to be substantial in most practical situations.

4 MONTE CARLO SIMULATION

This section conducts several Monte Carlo simulations to demonstrate the theoretical results presented in
previous sections. The simulation setup relates closely to Smith and Wallis (2009) with the true data generating
process (DGP) follows the autoregressive process of order 2:

yt = φ1yt−1 + φ2yt−2 + ν0t ν0t ∼ NID(0, σ2
ν). (10)

Note that E(yt) = 0. Obviously, the best forecast is based on the true DGP which is ft = φ1yt−1 + φ2yt−2.
Consider two competing models namely, a naı̈ve forecast and an AR(1) process. Specifically,

f1t = yt−1 and f2t = θyt−1. (11)

The paper considers the following parameter values:φ1 = 0.5, φ2 = −0.3, σ2
ν = 0.5, and θ =

−0.9525, which yields a positive covariance between the two competing forecast models . Specifically,

ΩΩΩν =

(
0.718 0.143
0.143 1.392

)
respectively.

The numbers of in-sample observations (N ) considered in this simulation are 10, 20, 50 and 100, and the
numbers of out-of-sample forecast observations (T ) are 5, 10, 20, 50, 100 and 500. Replication is set at 1000
in each case.

The Monte Carlo simulations consider the following hypotheses

H0 : E
(
σ2
i

)
− E

(
σ2
j

)
≤ 0 and H1 : E

(
σ2
i

)
− E

(
σ2
j

)
> 0, j = dgp, a, â, ânc,

where σ2
i is the variance of the simple average forecast and dgp is the variance of the sampling error of the

data generating process (true model), a is the optimal weight, â is the estimated optimal weight based on N
in-sample observations and ânc denotes the estimated optimal weight with the restriction that the correlation
between forecast is 0. The Diebold-Mariano test.

Tables 1 contains the relative forecast performances from different forecast combination weights based on
different number of in-sample and out-of-sample forecasts. Table 1 contains the results in the case when the
forecasts from the two models as defined in the equations in (11) are positively correlated. The entries in each
column are the proportion of time when the simple average forecasts produced lower MSFE than the other
weighting schemes.

As shown in column 3 (σ2
dgp) of Table 1, the simple average appears to outperform the forecast from the true

data generating process in the MSFE sense over 40% of the time when T = 5. The Diebold-Mariano test
suggests that less than 4% of the cases are statistically significant. Note that the significance level of test is set
at 5%, the result can potentially be explained by the type I error associated with the test. The implication of
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this finding is that naı̈ve comparison of MSFE without statistical testing can produce inconsistent results. This
is supported by the fact that as T increases the performance of the simple average decreases and the number of
statistically significant cases decreases to 0. This confirms the theoretical results that the calculation of MSFE
contains significant estimation error.

In Column 5 of Table 1, the simple average may appear to outperform the actual optimal weight when the
number of out-of-sample forecast is small but the associated Diebold-Mariano test suggested that only a very
small fraction of those cases are statistically significant. Note that the number of within sample observation is
not relevant in this case, as the forecast combination is based on the actual theoretical values. Thus, there is no
estimation error. As T increases, the simple average begins to perform worse than the actual optimal weight.
This corresponds to the fact that as T increases, the MSFE is tending closer towards the forecast variance and
therefore this result provides evidence for the hypothesis that the forecast combination puzzle is partly due to
estimation error and partly due to sampling error when calculating the MSFE.

The same seem to apply to estimated optimal weight. Although, the simple average may often appears to be
superior, especially when N is small, the Diebold-Mariano test once again reveals that only a small fraction
of these cases are statistically significant (see Column 7 in Table 1). As N increases, the impact of estimation
error in â decreases and the simple average becomes less successful. As T increases, the sample error in
estimating the forecast variance also decreases and the estimated optimal weight forecasting performance is
often superior.
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