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Abstract: Complexity and technical difficulties associated with mineral extractions together with signifi-
cant uncertainty surrounding mining operations require sophisticated stochastic control algorithms suitable for
high-dimensional problems to optimise operating strategies under uncertainty.

Minerals extraction problems have attracted significant interest from researchers in the fields of stochastic con-
trol and real options since the 1980s. Numerous approaches have been suggested in the literature to treat such
problems. Over the last decade, the least-squares Monte Carlo approach, originally motivated by financial
applications, that approximates value function by linear combinations of a set of basic functions, has become
very popular in the stochastic control problems in minerals applications. While such approach reduces com-
putational complexity of the problems, it has two significant drawbacks. Specifically, (1) a choice of basis
function is problematic; and (2) increasing the size of the basis may cause oscillations if the sample size is
small.

Recently, a new algorithm known as Convex Stochastic Switching (CSS) has been suggested. The algorithm
approximates a convex value function by piecewise affine linear convex functions in terms of sub-gradients.
The linear dynamics of the state space and the Bellman recursion are utilised to estimate the value functions
through operations on the sub-gradients. These value function approximations converge to the true values
uniformly on compact sets with probability one. The method is completely free from the drawbacks of the
least-squares Monte Carlo. This paper presents the first application of the new CSS algorithm to natural
resource investment problem.
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1 INTRODUCTION

Optimal decision making in the area of natural resource valuation can often be formulated as an optimal
switching problem. The literature devoted to this topic is already immense. A vast variety of methods have
been suggested to address decision making for high-dimensional state spaces, most of them dealing with
state space discretization, or with appropriate function approximations on the state space. Within the family
of state space discretization methods, the optimal quantization approach1 (see Pags et al. (2004)) has been
successfully applied to solve optimal switching and stopping problems with applications to finance (see Bron-
stein et al. (2010)). In the framework of optimal quantization, an appropriate approximation of the controlled
Markov process is achieved by a finite-state controlled Markov chain. This technique is based on an opti-
mal choice of discrete distributions, approaching the continuous-space transition probabilities. The resulting
discrete-space control problems are solved by traditional methods and provides nearly optimal solutions to the
original problems. This approach is justified by its reliable asymptotic properties. Let us now focus on func-
tion approximation methods which are directly related to our approach. Within the family of these methods,
the least-squares Monte Carlo technique represents a traditional way to approximate the value function by
linear combinations of basis functions. Over the last decade, this approach has attracted remarkable attention
Following earlier works Carriere (1996); Tsitsiklis and Van Roy (2001); Tsitsiklis and Roy (1999), the contri-
bution of Longstaff and Schwartz Longstaff and Schwartz (2001) became a source of extensive research, which
focused on the theoretical justifications of this method. Convergence issues have been addressed in Clement
et al. (2002) and later generalized in Stentoft (2004); Egloff (2005) and Egloff et al. (2007), extensions to
multiple exercise rights were considered in Carmona and Touzi (2008), and recently studied in Belomestny
and Schoenmakers (2010) where also connections to statistical learning theory and the theory of empirical
processes was emphasized. Furthermore, advanced regression methods such as kernel methods Ormoneit and
Glynn (2002a,b), local polynomial regression Fan and Gijbels (1996), and neural networks Bertsekas and Tsit-
siklis (1996), have been suggested. However, most of the classical function approximation methods do not use
specific structure of the value functions, unlike our approach which is based on certain convexity assumptions,
frequently satisfied in practical applications.

This paper will use the method proposed by Hinz (2014) to treat the valuation problem under the framework
of the so-called Convex Switching Systems (CSS). The CSS algorithm belongs to the class of value function
approximation methods, such as the Least Squares Monte Carlo (LSMC) method popularized by Longstaff
and Schwartz (2001). However, the LSMC methodology uses linear combinations of basis functions which
makes implementation difficult since a choice of the basis may not be obvious. The growth of the sample size
and basis dimension also cannot be chosen independently due to overfitting issues (see Stentoft (2004)). In
contrast, the CSS algorithm approximates the value function using operations on subgradients and the growth
of the sample size is decoupled from the approximating function space. In contrast to the popular LSMC
method, the CSS algorithm ensures uniform convergence of value functions on compact sets, which ensures
convergence of the prescribed policies to optimality. Furthermore, the present framework provides an efficient
method for numerical solutions. The idea is based on approximations of convex value functions by piecewise
affine linear functions. Representing such functions in terms of matrices, the entire numerical scheme boils
down to a sequence of a few simple matrix transformations acting in an algorithmically appealing, dimension-
independent way. Our methodology is directly applicable to high-dimensional problems and shows remarkable
numerical efficiency and excellent precision. More importantly, we establish a sound and reliable diagnostics
and quality assessment tool for a posterior justification of the numerical approximation (whose details are
given in Hinz and Yap (2014)). The authors believe that such combination of efficient numerical schemes with
a subsequent diagnostic check can be very useful in practical applications. and intend to publish an R package
containing their implementation of CRAN next.

2 CONVEX SWITCHING SYSTEMS

This paper considers the following finite time horizon optimal decision problem. The system state consists
of a discrete and a continuous component. More precisely, suppose that the state space E = P × Rd is
the product of a finite space P and the Euclidean space Rd. Suppose that the first component p ∈ P is
deterministically driven by a finite set A of actions in terms of a function α : P ×A→ P, (p, a) 7→ α(p, a),
where α(p, a) ∈ P is the new position if the previous position was p and action a ∈ A was undertaken by
the controller. Further, assume that the continuous state component z ∈ Rd evolves as a Markov process
(Zt)

T
t=0 on Rd realized on a probability space (Ω,F ,P) and governed by the transition kernels which satisfy

1The author is grateful to an anonymous referee for pointing out this issue
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(z,dz′) 7→ P(Wt+1z ∈ dz′), z ∈ Rd, t = 0, . . . , T − 1, a ∈ A, with the so-called disturbances (Wt)
T
t=1

described by independent integrable d×dmatrix-valued random variables. Intuitively, (Zt)
T
t=0 can be thought

as governed by the following uncontrolled linear dynamics Zt+1 = Wt+1Zt which is started at a given point
z0 ∈ Rd. Let us now turn to the specification of control costs. Assume that taking an action a ∈ A causes an
immediate reward rt(p, z, a) which depends on the state (p, z) ∈ E and on the action a ∈ A through given
reward functions rt : E×A→ R which may be time t = 0, . . . , T dependent. At the end of the time horizon,
at time T , it is assumed that no action can be taken. Here, if the system is in a state x, a scrap value rT (x),
which is described by a pre-specified scrap function rT : E → R, is collected. The reward functions and scrap
values are assumed to be convex and globally Lipschitz continuous in the continuous component z.

At each time t = 0, . . . , T the decision rule πt is given by a mapping πt : E → A, prescribing at time t an
action πt(p, z) ∈ A for a given state (p, z) ∈ E. A sequence π = (πt)

T
t=0 of decision rules is called policy.

When controlling the system by the policy π = (πt)
T−1
t=0 , one recursively obtains actions and system states

aπt := πt(p
π
t , Zt), pπt+1 = α(pπt , a

π
t ), Zt+1 = Wt+1Zt. The so-called policy value vπ0 (p, z) is defined

for (p, z) ∈ E as the total expected reward vπ0 (p, z) = E
[∑T−1

t=0 rt(p
π
t , Zt, a

π
t ) + rT (pπT , ZT )

]
under the

assumptions that pπ0 = p and Z0 = z. A policy π∗ = (π∗t )T−1
t=0 is called optimal if it maximizes the total

expected reward over all policies π 7→ vπ0 (p, z). To obtain such policy, one introduces for t = 0, . . . , T − 1
the so-called Bellman operator

Ttv(p, z) = max
a∈A
{rt(p, z, a) + E(v(α(p, a),Wt+1z))} , (p, z) ∈ P × Rd (2.1)

acting on all functions v where the stochastic kernel is defined. Consider the Bellman recursion, also referred
to as backward induction:

vT (p, z) = rT (p, z), vt = Ttvt+1 for t = T − 1, . . . , 0. (2.2)

Under additional assumptions (specified by the notion of Convex Switching System) there exists a recursive
solution (v∗t )Tt=0 to the Bellman recursion. These functions (v∗t )Tt=0 are called value functions, they determine
an optimal policy π∗ = (π∗t )Tt=0 via

π∗t (p, z) = argmaxa∈A
{
rt(p, z, a) + E(v∗t+1(α(p, a),Wt+1z))

}
, t = T − 1, . . . , 0 (2.3)

3 CSS ALGORITHM

Let us now present an algorithm from Hinz (2014). The first step in obtaining a numerical solution to the
backward induction (2.2) is an appropriate discretization of the Bellman operator (2.1) to

T nt v(p, z) = max
a∈A

(rt(p, z, a)+
n∑
k=1

νnt+1(k)v(α(p, a),Wt+1(k)z))

with the expectation replaced by its numerical counterpart which is defined in terms of an appropriate
distribution sampling (Wt+1(k))nk=1 of each disturbance Wt+1 with corresponding probability weighting
(νnt+1(k))nk=1. In the resulting modified backward induction

v
(n)
T = rT , v

(n)
t = T nt v

(n)
t+1, t = T − 1, . . . 0 (3.1)

the functions (v
(n)
t )Tt=0 need to be described by algorithmically tractable objects. Here we use convexity. Since

the reward and scrap functions are convex in the continuous variable, the modified value functions (3.1) are
also convex and we can approximate them by piecewise linear and convex functions. For this, we introduce the
so-called sub-gradient envelope SGf of a convex function f : Rd → R on a grid G ⊂ Rd SGf = ∨g∈G(Ogf)
which is a maximum of the sub-gradients Ogf of f on all grid points g ∈ G. Using the sub-gradient envelope
operator, we define the double-modified Bellman operator as

T m,nt v(p, ·) = SGmmax
a∈A

(
rt(p, ·, a)+

n∑
k=1

νnt+1(k)v(α(p, a),Wt+1(k)·)

)
,

where the operator SGm stands for the sub-gradient envelope on the grid Gm = {g1, . . . , gm}. The corre-
sponding backward induction

v
(m,n)
T (p, ·) = SGmrT (p, ·), p ∈ P (3.2)

v
(m,n)
t (p, ·) = T m,nt v

(m,n)
t+1 (p, ·), t = T − 1, . . . 0. (3.3)
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yields the so-called double-modified value functions (v
(n,m)
t )Tt=0 which enjoy excellent asymptotic and algo-

rithmic properties. Namely, under appropriate additional assumptions, the double-modified value functions
converge uniformly to the true value functions almost surely on compact sets. These assumptions include the
convexity and global Lipschitz continuity of the rewards and scraps, the integrability of all disturbances and
some restrictions on the distribution sampling and grid density.

Since the double-modified value functions (v
(m,n)
t )Tt=0 are piecewise linear and convex, they can be expressed

in a compact and appealing form using matrix representations. Note that any piecewise convex function f can
be described by a matrix where each linear functional is represented by a row in the matrix. To denote this
relation, let us agree on the following notation: Given a function f and a matrix F , we write f ∼ F whenever
f(z) = max(Fz) holds for all z ∈ Rd. Let us emphasize that the sub-gradient envelope operation SG on a
grid G is reflected in terms of a matrix representative by a specific row-rearrangement operator f ∼ F ⇔
SGf ∼ ΥG[F ] where the row-rearrangement operator ΥG associated with the grid G = {g1, . . . , gm} ⊂ Rd
acts matrix F with d columns as follows:

(ΥGF )i,· = Fargmax(Fgi),· for all i = 1, . . . ,m. (3.4)

For piecewise convex functions, the result of maximization, summation, and composition with linear map-
ping, followed by sub-gradient envelope can be obtained using their matrix representatives. More precisely, if
f1 ∼ F1, f2 ∼ F2 holds, then it follows that SG(f1+f2) ∼ ΥG(F1)+ΥG(F2); SG(f1∨f2) ∼ ΥG(F1tF2);
SG(f1(Wt+1(k)·)) ∼ ΥG(F1Wt+1(k)), where the operator t stands for binding matrices by rows.

Under the assumptions of global Lipschitz continuity and convexity for scraps and reward functions, the back-
ward induction (3.2) and (3.3) can be expressed in terms of the matrix representatives V m,nt (p) of the value
functions v(m,n)

t (p, ·) for p ∈ P , t = 0, . . . T . Since the double-modified backward induction involves maxi-
mization, summations and compositions with linear mappings applied to piecewise linear convex functions, it
can be rewritten in terms of matrix operations. Let us present the resulting algorithm:

Algorithm 1: Convex Switching System Algorithm
input :

• State discretization by a grid G(m) ⊂ Rd
• Disturbance distribution discretization {Wt(k)}nk=1 and their corresponding weights {νnt (k)}nk=1
• Matrix representatives for scrap functions: RmT (p) ∼ SG(m)rt(p, ·)
• Matrix representatives for reward functions: Rmt (p, a) ∼ SG(m)rt(p, ·, a), p ∈ P , a ∈ A

1 for p ∈ P do
2 V m,nT (p)← ΥG(m)RmT (p);
3 end
4 for t ∈ {T − 1, . . . , 0} do
5 for p ∈ P do
6 Ṽ m,nt+1 (p)←

∑n
k=1 ν

n
t+1(k)ΥG(m)

(
V m,nt+1 (p)Wt+1(k)

)
;

7 end
8 for p ∈ P do
9 V m,nt (p)← ΥG(m) ta∈A

(
Rmt (p, a) + Ṽ m,nt+1 (α(p, a))

)
;

10 end
11 end

output:

• Matrix representatives of approximate value function: (V m,nt (p))p∈P , t = 0, . . . , T

• Matrix representatives of approximate expected value function: (Ṽ m,nt (p))p∈P , t = 1, . . . , T

If the disturbance matrices are identically distributed across time, a significant amount of computational effort
can be saved by approximating the conditional expectation operator using a nearest neighbors algorithm, as
described in Hinz and Yap (2014). Finally, let us turn to the optimality of the policy prescribed by the above
algorithm. Our algorithm returns matrix representatives of approximates value functions and approximated
expected value functions, which define a candidate for a nearly optimal strategy by

πm,nt (p, z) = argmaxa∈A

(
max(Rmt (p, a)z) + max(Ṽ m,nt+1 (α(p, a))z)

)
.
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Given the pointwise convergence

lim
(m,n)→∞

(
max(Rmt (p, a)z) + max(Ṽ m,nt+1 (α(p, a))z)

)
= rt(p, z, a) +E(v∗t+1(α(p, z),Wt+1z)), (3.5)

for all p ∈ P , a ∈ A, and t = 0, . . . , T − 1 we deduce that lim(m,n)→∞ πm,nt (p, z) = π∗(p, z) p ∈ P, a ∈
A, t = 0, . . . , T − 1 holds for each point (p, z) ∈ E where the maximizing action in is uniquely determined
inA→ R, a 7→ rt(p, z, a)+E(v∗t+1(α(p, z),Wt+1z)). The conditions for (3.5) to hold are given in Hinz
(2014) and are satisfied under the assumptions of Convex Switching Systems. That is, using algorithm (1) with
appropriate grid tightening m→∞ and disturbance sampling n→∞, we obtain a sequence (πm,n)m,n∈N of
policies which approximates an optimal policy π∗. Since the set A is finite, the convergence in (3.5) implies
that algorithm (1) prescribes an optimal policy for a sufficiently dense grid and a sufficiently large disturbance
sampling.

3.1 An efficient implementation

The computational performance of our approach suffers from the fact that most of the calculation time
is being spent on matrix rearrangements required by the operator Υ. Namely, in order to calculate∑n
k=1 νt+1(k)Υ[Vt+1(p′) ·Wt+1(k)] the row-rearrangement must be performed n times, once for each dis-

turbance matrix multiplication. This task becomes increasingly demanding for larger values of the disturbance
sampling sizes n. particularly in high dimensions. Let us omit the time index t + 1 to clarify the idea of
efficiency improvement developed in Hinz and Yap (2014). This approach focuses on the two major compu-
tational problems: the rearrangement Υ[VW (k)] of large matrices V ·W (k), and the summation of matrices
Υ[V ·W (k)] over a large index range k = 1, . . . , n. The crucial point is that one can approximate the procedure
in the first problem by replacing the row-rearrangement operation with an appropriate matrix multiplication.
More precisely Hinz and Yap (2014) suggests

constructing a matrix Y (k) such that Y (k)VW (k) approximates Υ[VW (k)]. (3.6)

for k = 1, . . . , n. The realizations of the approximation (3.6) is technical and relies on efficient implementation
of the so-called approximate next-neighbor search and hierarchical clustering, whose details are discussed in
Hinz and Yap (2014). Given (3.6), we now have the following approximation:

n∑
k=1

ν(k)Υ[VW (k)] ≈
n∑
k=1

ν(k)Y (k)VW (k) (3.7)

and this in turn requires an efficient calculation of sums of matrices. In practical examples, the distribution
sample size n and the grid size m (row number of V ) will typically be orders of magnitude of the dimension
d of the disturbance matrices W (k). For instance, to achieve an acceptable level of numerical convergence in
typical applications, the sample size n and the grid size m must be chosen in the range of several thousands,
whereas the state size dimension d is typically of several dozens. This insight shows that a significant re-
duction in computational effort can be achieved by an additive decomposition of the disturbance realizations.
Assuming that disturbance matrix W is represented as the linear combination W = W̄ +

∑J
j=1 εjE(j) with

non-random matrices W̄ and (E(j))Jj=1, and random coefficients (εj)
J
j=1, we obtain the following interchange

of summations on the right-hand side of (3.7):

n∑
k=1

ν(k)Y (k)VW (k) =

(
n∑
k=1

ν(k)Y (k)

)
V W̄ +

J∑
j=1

(
n∑
k=1

ν(k)εj(k)Y (k)

)
V E(j).

By pre-computing the matrices in parenthesis one reduces the computations significantly, if (Wt)
T
t=1 are iden-

tically distributed.

4 NATURAL RESOURCES UNDER FLEXIBLE EXTRACTION

Consider a dynamic decision process where an agent aims to optimise the usage of a natural resource asset
containing a fixed level of inventory. We assume that at any time t = 0, . . . , T − 1 an action a ∈ A must be
applied. The set A contains the following: open, close or abandon the asset. If the asset is opened, it returns a
revenue depending on market conditions but the inventory level decreases. If the asset is closed, the inventory
is preserved but a maintenance cost must be paid. An abandoned asset yields neither costs nor revenue. The
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positions of this system carry the information about present inventory levels as well as the mode of the asset.
We assume that an asset is automatically abandoned when the inventory is exhausted. Let us now specify the
ingredients of our problem under the framework of Section 2. Assume that the set P = {0, 1, . . . , I} × {1, 2}
stands for all possible system positions with the interpretation that the first component p(1) of the position
(p(1), p(2)) ∈ P describes the inventory level; p(1) = I ∈ N indicates that the inventory is full whereas
p(1) = 0 stands for an exhausted or abandoned asset. Further, assume that the second component p(2) of the
position (p(1), p(2)) ∈ P indicates whether the asset is closed p(2) = 1 or opened p(2) = 2. Let us turn now to
the action set A = {0, 1, 2} and its impact on the evolution of the position. We assume that a = 0, 1, 2 stand
for the actions to abandon, to close, and to open the asset, respectively. Define α : P×A→ P in the following
manner: abandoning the asset: α((p(1), p(2)), 0) = (0, 1); closing the asset: α((p(1), p(2)), 1) = (p(1), 1); and
opening the asset: α((p(1), p(2)), 2) = (max{p(1) − 1, 0}, 2).

The dynamics of the continuous state component will be described by a sampled geometric Brownian mo-
tion Zt+1 = Wt+1Zt, t = 0, . . . , T − 1, Z0 ∈ R+, where (Wt)

T
t=1 are independent random variables

following a log-normal distribution. Finally, we determine the reward functions for our system. If the asset
is abandoned or the resource is exhausted, we assume that there is neither costs nor revenue associated with
asset rt(((0, p(2)), z), a) = 0, a ∈ A, z ∈ R, t = 0, . . . T − 1 For the case where p(1) > 0, we have
rt(((p

(1), p(2)), z), a) = ht(z)1{2}(a) +mt1{1}(a) + ct|p(2) − a|, t = 0, . . . T − 1 with the following inter-
pretation: a revenue is collected which depends on z through a pre-specified convex function ht if we decide
to open the mine; a maintenance fee mt is to be paid if the mine is chosen to be closed down; a switching fee
ct is incurred whenever the operational mode transitions from opened to closed or vice versa.

We now consider the problem studied by Brennan and Schwartz (1985). We assume that the decision maker
does not sell to the buyer at a fixed price but instead trades directly in the spot commodity market. We
assume that the cost of extraction is deterministic. Let denote by ∆ > 0 the physical time duration between
subsequent decision times which are indexed by integers {0, 1, . . . , T} ∈ N. Furthermore, assume that the
inventory levels are equidistantly sampled with step size corresponding to the maximal extraction within one
time step and are indexed by integers {0, . . . , I} ⊂ N. To account for the time value, we introduce the variables
ρ > 0, θ > 0 and κ > 0 which stand for the interest rate property tax rate, and inflation rate, respectively.
With these assumptions, the revenue from extraction at time t ∈ {0, . . . , T − 1} is given by ht(z) = z ·
H1∆e(−ρ−θ)t∆−H2∆e(−ρ−θ+κ)t∆, z ∈ R. Thereby, the gross revenue is represented by z ·H1∆e(−ρ−θ)t∆

where z stands for the resource price, H1∆ describes the extracted volume and the factor e(−ρ−θ)t∆ stands for
discounting. Similarly, the expression H2∆e(−ρ−θ+κ)t∆ accounts for operating costs incurred from time t to
t+ 1 which are proportional to time duration ∆ and are also adjusted due to discounting effects. Similarly, the
maintenance and switching costs are given by mt = m∆e(−ρ−θ+κ)t∆ and ct = ce(−ρ−θ+κ)t∆ respectively
for t = 0, 1, . . . , T −1. We assume that the scrap value is zero and introduce the price of the resource to follow

Zt+1 = exp

([
ρ− y +

σ2

2

]
∆ + σ

√
∆Nt+1

)
Zt, t = 0, . . . , T − 1 (4.1)

with independent standard normally distributed random variables (Nt)
T−1
t=1 and ρ = 0.1 representing the

interest rate, y = 0.01 the convenience yield, and σ2 = 0.08 the volatility. For our numerical illustration, we
assume T = 30, ∆ = 0.25, Ī = 15, H1 = 5, H2 = 2.5, κ = 0.08, c = 0.2 and θ = 0.02. The Table 4.1 shows

B&S CSS Out Of Sample
Price Open Closed Open Closed Open Closed
0.3 1.25 1.45 1.198 1.398 1.270(.042) 1.477(.042)
0.4 4.15 4.35 4.082 4.282 4.123(.057) 4.325(.057)
0.5 7.95 8.11 7.875 8.046 7.964(.067) 8.139(.072)
0.6 12.52 12.49 12.480 12.450 12.394(.076) 12.341(.081)
0.7 17.56 17.38 17.560 17.360 17.660(.089) 17.453(.089)
0.8 22.88 22.68 22.910 22.710 22.938(.101) 22.738(.101)
0.9 28.38 28.18 28.460 28.260 28.463(.114) 28.261(.114)
1.0 34.01 33.81 34.130 33.930 34.305(.131) 34.104(.131)

Table 4.1. The results from Brennan and Schwartz (1985) are listed in the second and third columns. The
CSS estimates were computed using an equally spaced grid from 0 to 20 using 4,001 grid points and 10,000
disturbances. The out of sample values were computed using 100,000 anti-thetic paths.
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that our algorithm (CSS) attains similar results to Brennan and Schwartz (1985) although we have assumed a
lower operational flexibility (i.e. only able to switch four times per year) in difference to the continuous-time
switching model from Brennan and Schwartz (1985) whose results are obtained from a numerical solution of
a system of partial differential equations.

5 CONCLUSION

In this paper, we have shown that the CSS algorithm makes a suitable companion to LSMC and the clas-
sical PDE approach for the valuation of natural resource assets. The addition of another powerful tool to a
practitioner’s toolbox is always welcomed.
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