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Abstract: Adequate and timely irrigation based on real-time monitoring of crop water status is critical for 
efficient and sustainable water use. However, detection of water status in large crop fields is not a trivial task 
as manual inspection can be time consuming and costly. Moreover, the symptoms of water stress are visually 
detectable only after the crops are already in a significantly water deficient stage. Consequently, capability of 
monitoring water status in crops on a regular basis could maximize productivity and water use efficiency. As 
an indicator, the crop water stress index (CWSI) has been widely used to estimate water status in the crop 
fields. CWSI can be derived from ground-based leaf temperature measurements, however, airborne or UAV-
borne high-resolution thermal sensing provides a superior platform to cover large regions within a short time 
window. In this paper, UAV-borne thermal sensing was conducted to map plant water stress and spatial 
variability in water control and deficit plots over 1 ha of a nectarine orchard at an altitude of 100 m from 
ground level. Targets of ground control points (GCPs) were designed to suit the image spatial resolution as 
well as the visibility in the thermal infrared spectral range. The target was made of aluminium body marked 
with a black cross, which can be detected as a cool object in the thermal infrared image due to its low 
emissivity. Thermal infrared images were post-processed to generate single temperature-based orthomosaic 
image for the entire study field. CWSI map was computed using canopy temperatures at the centre of 
canopies from the mosaic image. Histogram analysis was used to estimate the lower boundary temperature 
(Twet), representing the temperature of fully transpiring leaves. The upper boundary temperature (Tdry) was 
determined by air temperature + 6 ⁰C. Ground measurements of midday stem water potential (SWP) and 
stomatal conductance (gc) were collected concurrently with UAV operation and used to correlate the thermal 
measurement to crop biophysical parameters. Results showed that CWSI was in good agreement with both 
SWP and gc with determination coefficients (R2) of 0.92 and 0.97, respectively. Thus, remotely estimated 
CWSI from a UAV platform can play an important role in effective mapping of spatial variability of 
nectarine water stress and subsequently in optimal management of irrigation. 
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1. INTRODUCTION 

Undesirable water stress in some crops causes lower levels of quality and yield. Adequate and timely 
irrigation based on real-time monitoring of water status in crops is highly desired to control quality and yield. 
As an indicator of crop water status, the Crop Water Stress Index (CWSI) was introduced based on the 
energy balance (Jackson et al., 1981). In early research, the canopy temperature was measured with hand- 
held infrared thermometers, targeting dominant foliage. However, measuring the representative canopy 
temperature using a portable infrared thermometer is difficult, especially over large areas featuring 
heterogeneous biophysical and water stress states (Moran et al., 1994). In addition, ground-based methods 
are often labor intensive and sometimes impractical when applied to the entire crop area. As the availability 
of various remote sensing data has dramatically increased in recent years, several investigations on 
estimating water stress by combining ground measurement and remotely sensed imagery data have been 
conducted in order to not only apply to larger areas of crops, but also to reduce the complexity of ground 
measurement and water stress index calculation (Gao, 1996; Leinonen and Jones, 2004; Kim et al., 2011). 

Based on remotely estimated CWSI, various studies using both visible and thermal infrared images attempted 
to calculate the level of crop water stress as a quantitative index (Leinonen and Jones, 2004). For the 
calculation of the crop temperature separately from soil temperature, the co-registration method utilizing 
visible and thermal images in ground platforms has been explored (Möller et al., 2007). This methodology 
enables foliage cover area and the soil surface to be distinguished in the visible image from each other. The 
foliage cover temperature is calculated in the thermal image, which is co-registered with the visible image 
that is used to mask out non-leaf material. Despite the advantages of this methodology in measuring the 
canopy area, it requires time-consuming co-registration post analysis. In order to eliminate the need for 
visible imagery and to facilitate the calculation of CWSI, a method using only thermal imagery from near 
ground level has been proposed based on individual histogram analysis per image, in which the histogram of 
thermal imagery was applied to determine canopy related pixels by statistical and empirical methods (Meron 
et al., 2010; Rud et al., 2014). An automated version of this methodology was proposed in order to assess 
effectively vine water status within a short time window (Fuentes et al., 2012). Apart from the thermal 
images obtained from ground platforms, the unmanned aerial vehicle (UAV) based remote sensing has been 
developed and research on water stress detection with UAV system has been recently conducted, due to the 
rising need for economical and high resolution aerial images at large scale (Berni et al., 2009; Zarco-Tejada 
et al., 2012; Bellvert et al., 2014). 

The main objective of this research is to estimate CWSI with reduced field-based measurements and 
improved efficiency in the UAV-borne estimation. CWSI maps were generated to assess spatial variability of 
water stress under irrigation control and deficit regimes over a nectarine orchard using high-resolution 
thermal imagery from a UAV platform. The remotely estimated CWSI was compared with ground 
measurements of midday stem water potential (SWP) and stomatal conductance (gc), which were used as 
traditional crop water status parameters. 

2. MATERIALS AND METHODS 

2.1. Experimental site 

The experiment was carried out at a late maturing stage of nectarine in the Stonefruit Field Laboratory 
orchard of the Department of Economic Development, Jobs, Transport and Resources (DEDJTR), Tatura, 
Victoria, Australia (36°26'08"S, 145°16'13"E, 114 m elevation) on the 22nd of February, 2015. The soil is 
Shepparton fine sandy loam. Nectarine (the Prunus persica (L.) Batsch cv. Autumn Bright) trees were 
planted in 2014, at a row spacing of 4.5 m and tree spacing of 1.0 m in a 0.97 ha orchard (138 x 70 meters). 
Trees were trained to two canopy systems: central leader with one central vertical trunk and Tatura trellis 
with one vertical trunk and two arms canopies as Y shaped trees.  

For Tatura trellis trees, the canopy dimension of each leader was 1.85 m tall and 0.5 m wide. For central 
leader trees, canopy dimensions of were 2.0 m tall and 0.8 m wide. The study site (Figure 1) was divided into 
four experimental plots, where two irrigation treatments were applied as water control and deficit groups 
(Table 1).  Irrigation was applied via water drip lines located along the tree line with a flow rate of 1.6 Lh-1 
per 0.5 m. The two control plots (and remainder of orchard) were irrigated to meet crop water requirement on 
a daily basis, where irrigation run-time was decided by a weather-based crop evapotranspiration (ETc) 
model. 

1414



Park et al., Estimation of crop water stress using high-resolution imagery from UAV 
 
 
Two deficit plots were imposed by withholding 
irrigation by closure of the dripper tap five days 
prior to the UAV and field data acquisition. Each 
plot has approximately 20 nectarine trees on 
average. 

2.2. UAV imagery acquisition 

A thermal Infrared (TIR) camera (A65, FLIR 
Systems, Inc.) was carried in the multirotor type 
of UAV system (S900, DJI, Shenzhen, China). 
The camera  spectral range is 7.5–13 µm with a 
resolution of 640 x 512 pixels, a focal length of 25 
mm,  and a field of view of 25° (H) x 20° (V). The 
measurement accuracy of temperature is within 
±5°C. Temperature calibration process was carried 
out to retrieve more accurate temperatures of 
surface with a known temperature of a ground 
target. TIR images were acquired across the entire 
orchard at near solar noon under clear sky 
conditions. Targets of ground control points 
(GCPs) were designed to be both suitable for 
image spatial resolution and for thermal camera 
visibility.  In particular, the target material was 
made of aluminium sheet, which works as a cool 
target in the thermal image due to its low 
emissivity in the thermal infrared range. Total of 
24 GCPs with 60 x 60 cm size were deployed in 
the test field and surveyed using a differential 
GPS (DGPS) with less 3 cm accuracy as shown in 
Figure 1. The flight plan was established at a 
horizontal speed of 2 ms-1 and an altitude of 
90 m above ground level (AGL), for the 
consideration of image footprint and overlap 
for image post-processing. The footprint of a 
single thermal image was approximately 39.2 
x 31.3 m, and one pixel ground sample 
distance (GSD) was 6.12 cm. This GSD 
enabled clear distinguishment between leaf 
area and soil. The entire experiment orchard 
was covered in one flight by 118 thermal 
images with over 60% forward and 40% side 
overlap. Camera and flight parameters at 90 m AGL are described in Table 2. 

2.3. Ground data acquisition 

Leaf temperature was measured on the two sample 
trees for each irrigation treatment using a hand-
held infrared thermometer (TN410LCE, ZyTemp) 
within 40 minutes of UAV image acquisition. 
Stomatal conductance (gc, mmol m-2 sec-1) was 
obtained on three fully expanded sunlit leaves per 
sample tree using a portable photosynthesis 
system (LI-6400; LI-COR Inc., Lincoln, Nebraska, 
USA) during midday. Stem water potential (ψstem, 
MPa) was measured on two fully expanded and 
shaded leaves per sample tree with a Scholander 
pressure chamber (Model 3000; Soil Moisture 
Equipment Co., Santa Barbara, CA, USA) during 
midday. Leaves located on branches near the main 

 

Figure 1. Experimental site (1 ha) in the Stonefruit 
Field Laboratory orchard. Water deficit plots are 

presented in yellow, and control plots in blue. T1-T4 
represents the sample tree from each treatment. The 
location of ground control point (GCP) in a black 

square with a white cross. 

Table 2. TIR camera specifications on UAV. 

Specifications TIR image (FLIR A65) 

Focal Length (mm) 25 

Resolution (pixel) 640 x 512 

Thermal Sensitivity <0.05°C at 30°C 

Accuracy ±5°C 

Image footprint  (m) 39.2 x 31.3 

Pixel GSD (cm) 6.12 

Image radiometric resolution (bit) 14 

Table 1. Descriptions of sample trees. 

Sample Crop cultivar Tree Training Treatment 

T1 Nectarine_Autumn Bright Central Leader Deficit 

T2 Nectarine_Autumn Bright Central Leader Control 

T3 Nectarine_Autumn Bright Tatura Trellis Deficit 

T4 Nectarine_Autumn Bright Tatura Trellis Control 
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trunk were covered with an aluminium foil bag for an equilibration period of 15-20 minutes prior to excision 
and the measurement of water potential. Air temperature for the upper boundary temperature (Tdry) was 
obtained from the nearby (<300 m) Bureau of Meteorology weather station (No. 081049). 

2.4. Image processing 

TIR images were obtained into 14-bit raw format of signal-based values emitted from the objects.  The raw 
TIR images were processed with Matlab R2014b (Mathworks Inc.) and converted to 14-bit temperature-
based data according to the FLIR Systems’ register values. To retrieve accurate temperatures from the raw 
signal data, the temperature values of calibration targets such as water body, bare soil, and vegetation were 
measured with a hand-held infrared thermometer concurrently with the UAV operation over the experimental 
site. Eqs. (1) and (2) are the formulas of one-point calibration for retrieving the adjusted surface temperature 
provided by FLIR systems (FLIRSystems, 2013). 								ܱ௔ௗ௝௨௦௧௘ௗ ൌ ܵ െ ܴ݁ሺ݊݅݊ݓ݋݊݇ܶ/ܤ	݊݅ݒ݈݁ܭሻ	െ	1	  

(1) 							 ௔ܶௗ௝௨௦௧௘ௗ	ሺ௜௡	௄௘௟௩௜௡ሻ ൌ logሺܤ ܴܵ െ	ܱ௔ௗ௝௨௦௧௘ௗ ൅ 1ሻ  
 

(2) 

where S is a 14-bit raw signal value, T an object temperature, R a constant for converting flux to temperature 
derived from Planck’s constant h, B a constant derived from Boltzmann’s constant and Planck’s constant h, 
O an offset (signal to radiance). The temperature of the calibration target was used to calculate the adjusted 
offset parameter (ܱ௔ௗ௝௨௦௧௘ௗ), and then adjusted temperature was obtained. 

The Agisoft PhotoScan software (Agisoft LLC, Russia) was used to perform photogrammetric processing of 
aerial image triangulation and georeferenced orthomosaic based on the geo-tagged flight log and GCPs. 
Figure 2 (a) shows the orthomosaic TIR image from UAV, showing the temperature variability of the 
orchard. Figure 2 (b) shows the features of the two canopy training systems (Central Leader and Tatura 
Trellis), the shape of GCP, and the differences in pixel temperatures of vegetation and soil area.  

 

Figure 2. (a) Orthomosaic aerial TIR image across the orchard in temperature degree (T oC); (b) TIR 
image details of canopy training systems (Central Leader and Tatura Trellis), a shape of ground control 

point (GCP), and temperature differences in vegetation and soil. 
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3. RESULTS 

3.1. Crop Water Stress Index (CWSI) 

CWSI was computed using canopy temperatures at centre canopy from the mosaicked image using the 
formula suggested by Jones (1992) in Eq. (3).  								ܫܹܵܥ ൌ 	 ௖ܶ௔௡௢௣௬ െ ௪ܶ௘௧ௗܶ௥௬ െ ௪ܶ௘௧  

 

(3) 

where  ௖ܶ௔௡௢௣௬ is canopy temperature from the aerial TIR image, ௪ܶ௘௧ the temperature of a fully transpiring 
leaf indication lower boundary, and ௗܶ௥௬ the temperature of a non-transpiring leaf as upper boundary. 
Histogram analysis was used to estimate ௪ܶ௘௧, taken from the coldest temperature of the histogram from the 
orthomosaic TIR image (Rud et al., 2014). The histograms featured distinctive bimodal distribution, 
representing vegetation and soil background due to apparent temperature differences of the two features up to 
30 - 35	oC. The second distribution in the bimodal was excluded, as the temperatures of the soil background 
were distributed across the second peak in the distribution. The upper boundary temperature, ௗܶ௥௬, was 
determined by air temperature plus 6 oC, based on the empirical methods as suggested by López et al. (2011). 
Figure 3 (a) shows the remotely estimated CWSI map from UAV, assessing the water status variability of the 
orchard. In Figure 3 (b), two water deficit and another two control treatment groups are presented. T1 - T4 
represents sample trees from each treatment where SWP, gc, and leaf temperature were measured to compare 
with CWSI. The higher CWSI was estimated in both water stressed groups, reaching 0.79, whereas the CWSI 
in control groups was represented at values approximately to 0.39. Figure 3 (c) shows the pixel level of 
CWSI based on 6.12 cm GSD which enables the exclusion of soil background to analyze canopy water status 
more precisely.  

 

Figure 3. (a) CWSI map derived from UAV sensing. Two yellow rectangles present the area of irrigation 
treatments and sample trees; (b) CWSI of water deficit and control treatment groups in  CL (Central Leader) 
and TT (Tatura Trellis); (c) Examples of the pixel level CWSI for T3 (in deficit) and T4 (in control) sample 

trees. 
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3.2. Analysis 

The ground measurements of midday SWP and gc, which can directly reflect crop water stress parameters, 
were compared as shown in Figure 4 (a). Two measurements were moderately correlated with the coefficient 
of determination (R2) of 0.86. Both 
T1 and T3 in water deficit treatment 
indicated the lower SWP and gc 
than T2 and T4 in control treatment.  
CWSIs in the center of canopy, 
corresponding to the four sample 
trees, were taken along with the row 
direction in 27 pixels (1.6 m length 
on ground) since each tree spacing 
was 1.0 m and 0.3 m extra length at 
two sides was considered as a 
buffer. The selected CWSI values 
were averaged in order to represent 
the water status of the sample trees. 
In Figure 4 (b) and 4 (c), the 
relationships between averaged 
CWSI and SWP, between averaged 
CWSI and gc are presented. The 
SWP measurements in the two 
treatments had high relationships 
with CWSI (R2 = 0.92). Similar 
strong relationships between 
measured gc and transpiration rate 
and CWSI were also found (R2 = 
0.97).  

4. DISCUSSION AND 
CONCLUSIONS 

As shown in Table 1, T1 and T2, 
and T3 and T4 trees are from the 
same cultivar of nectarine and in the 
different training systems, central 
leader and Tatura trellis, 
respectively. For CWSI values, T2 
showed relatively higher CWSI 
(0.50) than CWSI (0.36) from T4, 
although they were in the control 
treatment. Certainly, the CWSI 
value of T2 was lower than T1 
(0.64), which is located in the same 
row and in deficit water treatment. 
A similar result was found for 
measured gc. Although T2 was 
treated with normal irrigation, the 
actual water status appears to be 
under mild water stress conditions, 
according to both water status 
parameters of CWSI and gc. 

This research demonstrated 
remotely estimated CWSI with 
reduced ground measurements and 
efficiency in the calculation for field scale estimation based on the histogram analysis, not requiring an 
artificial wet surface as a reference. CWSI map was generated to assess spatial variability of water stress 
across the entire nectarine orchard using high-resolution TIR images from a UAV platform. The remotely 
estimated CWSI was highly correlated with midday SWP and gc, which can be used as crop water status 

Figure 4. (a) Relationship between stem water potential (SWP) 
and stomatal conductance measured in the sample trees; (b) 

Relationships between CWSI and SWP; (c) Relationships between 
CWSI and stomatal conductance and transpiration rate. 

CWSI

Tr
an

sp
ira

tio
n 

ra
te

 [m
m

ol
m

-2
 s-

1]

St
om

at
al

 C
on

du
ct

an
ce

 [m
ol

m
-2

 s-
1]

T3

T4

T2

T1

y = -26.211x + 18.177
R² = 0.9702

y = -0.7362x + 0.4981
R² = 0.9747

0

0.05

0.1

0.15

0.2

0.25

0.3

0

1

2

3

4

5

6

7

8

9

10

0.3 0.4 0.5 0.6 0.7

Transpiration rate Conductance

T1

T2

T3

T4

y = -6.3793x + 1.284
R² = 0.9173

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0.3 0.4 0.5 0.6 0.7

CWSI
SW

P 
[M

Pa
]

Sample tree in water deficit

Sample tree in water control

y = 0.1034x + 0.3245
R² = 0.8632

0

0.05

0.1

0.15

0.2

0.25

0.3

-3.5 -2.5 -1.5 -0.5

T1

T3

T2

T4

Co
nd

uc
ta

nc
e 

[m
ol

m
-2

 s-
1]

SWP [MPa]

Sample tree in water deficit

Sample tree in water control

(a)

(b)

(c)

1418



Park et al., Estimation of crop water stress using high-resolution imagery from UAV 
 
 
parameters. This shows that the CWSI can be remotely and accurately estimated from UAV-borne imagery. 
In addition, the CWSI map can be used a location-based determination factor of irrigation needs. 

For future studies, the relationships between canopy temperature and crop cultivar, or canopy structure will 
be considered. Adaptive decision of the lower boundary temperature will be further studied based on a row-
based approach.  
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