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Abstract: Incursions of plant pests and diseases pose serious threats to food security, agricultural 
productivity and the natural environment. One of the challenges in confidently delimiting and eradicating 
incursions is how to choose from an arsenal of surveillance and quarantine approaches in order to best 
control multiple dispersal pathways. Anthropogenic spread (propagules carried on humans or transported on 
produce or equipment) can be controlled with quarantine measures, which in turn can vary in intensity. In 
contrast, environmental spread processes are more difficult to control, but often have a temporal signal (e.g. 
seasonality) which can introduce both challenges and opportunities for surveillance and control. This leads to 
complex decisions regarding when, where and how to search.  

Recent modelling investigations of surveillance performance have optimised the output of simulation models, 
and found that a risk-weighted randomised search can perform close to optimally. However, exactly how 
quarantine and surveillance strategies should change to reflect different dispersal modes remains largely 
unaddressed.  

Here we develop a spatial simulation model of a plant fungal-pathogen incursion into an agricultural region, 
and its subsequent surveillance and control. We include structural differences in dispersal via the interplay of 
biological, environmental and anthropogenic connectivity between host sites (farms). Our objective was to 
gain broad insights into the relative roles played by different spread modes in propagating an invasion, and 
how incorporating knowledge of these spread risks may improve approaches to quarantine restrictions and 
surveillance. 

We find that broad heuristic rules for quarantine restrictions fail to contain the pathogen due to residual 
connectivity between sites, but surveillance measures enable early detection and successfully lead to 
suppression of the pathogen in all farms. Alternative surveillance strategies attain similar levels of 
performance by incorporating environmental or anthropogenic dispersal risk in the prioritisation of sites.  

Our model provides the basis to develop essential insights into the effectiveness of different surveillance and 
quarantine decisions for fungal pathogen control. Parameterised for authentic settings it will aid our 
understanding of how the extent and resolution of interventions should suitably reflect the spatial structure of 
dispersal processes. 
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1. INTRODUCTION

Incursions of plant pests and pathogens pose serious threats to agricultural productivity, food security and the 
environment, and their impact and management impose considerable costs on agriculture and other economic 
sectors (Pimentel et al. 2000). In particular, invasive fungi are of growing concern worldwide (Gladieux et al. 
2015) and their management may impose significant costs and burdens on landowners (Cook et al. 2013).  

Pest and pathogen incursions generally require complex multi-layered management (Dhillon et al. 2005), 
which ideally integrates quarantine, surveillance and eradication efforts. Quarantine measures generally seek 
to limit the spread of a pest through anthropogenic means. Restriction zones may be declared which may 
relate to natural dispersal ability but may also account for human-facilitated movement through social 
contact, trade or market distribution. Quarantine can therefore include diverse measures such as roadblocks 
and inspections, and movement controls on machinery, soil and plant material (Cantrell et al. 2002), and may 
be more effective if it reflects the structure of socio-economic connectivity. Surveillance is an essential tool 
for determining and monitoring the spatial distribution of the pathogen in an eradication or containment 
programme (FAO 2006). Its ultimate objective is detection and containment of incidences of pest incursions 
before the invasion becomes unmanageable (Lance et al. 2014).  

Challenges in detecting and therefore delimiting and controlling pests and pathogens demand intelligent 
approaches to developing search strategies. Recent modelling approaches to pest surveillance and 
management point to the value of incorporating estimates of relative risk of spread (Parnell et al. 2014), 
including elements of socio-economic connectivity (Potts et al. 2013), in prioritising sites for surveillance. 
Such approaches, with advances in computational capability, show considerable promise for informing and 
optimising the management of detrimental invasive species.  

We present a stochastic model of a fungal pathogen incursion into a spatially-connected system of host 
farms, and its subsequent detection and management. We examine spread via multiple modes of dispersal: 
humans, soil-water and storm events. We then contrast the effect of management combinations of quarantine 
and surveillance based on different underlying risk assumptions that incorporate elements of these dispersal 
modes.  

We leave our model deliberately generic but choose some parameters and assumptions to correspond to 
fungal infections of banana plantations in Queensland, Australia. Recent major fungal infestations of 
Queensland bananas include Mycosphaerella fijiensis (causing black sigatoka) in 2001 (Henderson et al. 
2006) and Panama Tropical Race IV (Fusarium oxysporum f.sp. cubense) in 2015, as well as ongoing control 
of an incidence of M. musicola (causing yellow sigatoka; Cook et al. 2013). Such fungal incursions present 
serious challenges, rendering a major state industry susceptible to disruption and economic loss. An 
uncontained fungal pathogen may further spread into surrounding natural ecosystems where it may threaten 
native species such as the bananas M. jackeyi and M. acuminata subsp. banksii. These threats, coupled with 
the virtual ineradicability of some fungal pathogens, make the insights obtained from modelling of great 
potential value in maximising early detection and containment through informed quarantine and surveillance.  

2. THE MODEL

2.1. Spatial distribution of host properties 

We seeded a regional area Ω = 10,000 km2 with n = 
100 “host” farms (those with crops that are 
susceptible to fungal infection), choosing the centroid 
(xi, yi) of each individual farm i at random. We 
assumed that host farms comprised 10% of the total 
area, with individual farm areas, Ai, sampled from a 
lognormal (2.07, 0.69) distribution to give mean = 10 
ha and SD = 7.8 ha. The coefficient of variation of 
farm areas reflects that of farm sizes in a commercial 
banana enterprise in Queensland. 

2.2. Rainfall simulator 

We modelled scaled weekly rainfall wt by sampling 
from 2005-2014 rainfall records for Tully, 
Queensland (Bureau of Meteorology station 32042: 

Figure 1. Spatial distribution of properties in a 
10000km2 region, indicating the initial incursion at 

the most south-central property (red square).  
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www.bom.gov.au/climate/data; accessed on 30th 
June 2015), which was close to multiple fungal 
outbreaks in the past (see Introduction). To 
produce rainfall signatures typical of each week-
of-year, from daily rainfall data, we chose seven 
rainfall records from randomly selected days and 
years for each relevant week (1-52), and summed 
these to calculate weekly rainfall totals.  

For modelling purposes, we scaled the simulated 
rainfall relative to its mean (Figure 2) and further 
defined extreme-weather events relating to high 
rainfall, defining severity as linearly increasing on 
[0, 1] between rainfall levels hL and hU:  

Xt = max (0, min (1, (wt – hL)/(hU – hL) )). 

We arbitrarily set hL = 4 and hU = 10, which resulted in Xt > 0 for about 3.5% of weeks. 

2.3. Infection dynamics 

We modelled the intensity of fungal infection as notional “reproductive entities”, i.e. spore equivalents, 
without modelling fungal mycelia or fruiting bodies themselves. Nor did we model individual host plants but 
rather assumed that “fungal load” Ni,t, the coverage of fungal entities within farm i at time t, would grow 
following a logistic growth model (Scanlan and Vanderwoude 2006; Kompas and Che 2009):  

Ni,t+1 = [ min(1,wt) rNi,t + Δ(Ni , Nj≠i) ] (1 – Ni,t / AiK(mi,t)), 

whereby the maximum growth rate r = 0.1 is reduced under drier conditions (scaled weekly rainfall wt < 1). 
We used a time-step of one week to better model human-facilitated movement and management response.
Δ() is a composite function representing dispersal between farms, described in §2.5 below. K(mi,t) is a 
maximum density which depends on whether a farm has undergone management treatment (mi,t) for the 
infection. Although treated sites (mi,t = 1) likely have all host plants removed, we assume the fungus can persist 
at a base level in the soil, so that K(mi,t = 0) = 100 and K (mi,t = 1) = 1. We initiated infection at a single site (the 
first identified infected property is commonly called “IP1”) by setting its initial fungal load to 
NIP1,0 = 10. We chose the incursion site as that with the centroid closest to the centre-south of the grid (red 
square in Figure 1), to explore the influence of directional environmental connectivity (see next section).

2.4. Site connectivity 

We assumed that the fungus can spread between host farms either environmentally (through soil-water or 
larger storm events) or through human agency (socioeconomically), allowing us to contrast three spread 
modes and their potential relevance to management strategies. We modelled this potential spread by 
calculating farm connectivity on each of these levels, with more broadcast dispersal in major storm events. 

a) Environmental spread: we assumed that spores can be transmitted through soil-water, including
transmission by downstream irrigation. Therefore we modelled a unidirectional “plume” with distance-
decaying connections to farms lying within an angle of θ = ±30° to the north from a source farm. The
plume-spread from farms j to i is given by a plume connection matrix Cp with elements

cp,ij = σw exp(–dij) if |θ| ≤ 30° and yi > yj 

and  

cp,ij = 0 otherwise, 

where σw is the spread rate in the soil water and dij is the Euclidian distance between farms i and j; dij = 
[(xi – xj)

2 + (yi – yj)
2]½. A plume angle of ±30° starting from the exact centre-south of the grid would 

connect 56.7% of the properties (two triangular areas of 2165 each would be excluded). We also allowed 
for large-scale mixing events in major storms; see below. 

b) Socio-economic interactions between farms can aid fungal spread by transmission of mud-borne spores
either directly on humans or vehicles, or by equipment sharing. We assumed random strength of social
interaction (i.e., random variate vij drawn from Uniform[0,1] for i > j) and to account for higher

Figure 2. Typical (400 week sample trajectory; 
above) and overall distribution (n = 400000; below) 
of rainfall drawn from weather data for Tully, Qld.
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connections between neighbours, we weighted the level of interaction between pairs of farms linearly by 
inverse-distance, to produce a symmetric connection matrix Cs with elements 

cs,ij = cs,ji = vij [1 – dij / max(d••)] 

Note that one artefact of this distance model is that the two furthest-apart farms will not directly interact, 
although they may be strongly connected over two time steps depending on the strength of their shared 
connections. Following discovery of the pathogen we reduced the matrix Cs by a factor uα = 0.4 to reflect 
general community alertness, independent of quarantine restrictions to limit connectivity between farms.  

2.5. Dispersal  

Spore dispersal between sites depends on intensity (growth) of the infection at source. We assume that 
proportions fW, fX and fS of a site’s fungal growth (gi,t = min[1,wt]rNi,t) are available or mobilised for 
propagation by soil-water and irrigation, storms and societal means, respectively, with the propagule release 
zX

i,t also reflecting storm o intensity Xt. Thus, the variables 

zW
i,t = fW gi,t, 

zX
i,t = fX gi,t Xt , 

and 

zS
i,t = fS gi,t  

are the propagules leaving site i via soil-water (“W”), storms (“X”) and socio-economic interactions (“S”), 
respectively. These may arrive at other farms according to the connectivity between sites (employing the 
matrices Cp and Cs) and broader mixing in more extreme weather (e.g. Gottwald et al. 2002): 

aW
i,t = Σj≠i cp,ij z

W
j,t ; 

aX
i,t = (Σj z

X
j,t ) Ai/Ω; and 

aS
i,t = (1 – uααt) Σj≠i cs,ij z

S
j,t. 

are the propagules arriving at site i via soil-water, storms (arriving proportional to farm size Ai relative to 
regional area Ω) and humans, respectively. The quantity αt is an indicator variable which reduces the socio-
economic connectivity matrix Cs by factor uα to reflect general community awareness reducing interactions 
during the incursion response. Hence the net change due to dispersal in and out of site i is given by  

Δi,t = aW
i,t + aX

i,t + aS
i,t – (zW

i,t + zX
i,t + zS

i,t). 

2.6. Detection and Surveillance  

We assumed that detection of infestations occurs passively at first, and under active surveillance thereafter. 
For the initial passive detection, we calculated probability of detection at site i and time t as exponentially 
approaching one as infection increased: 

pi,t = 1 – exp(–δ(ρ0) Ni,t) 

We set δ(ρ) = –ln(1 – p*)/ρ such that there would be a probability of p* (set to 0.5) of detecting an infection 
intensity ρ = ρ0. For illustration purposes we set ρ0 = 200.  

For actively surveyed sites we assumed stronger detection levels (ρ = ρs = 10) and that probability varies with 
the proportion πi,t of the site surveyed:  

pi,t = 1 – exp(–δ(ρs) πi,t Ni,t). 

We assumed that management resources constrain the total area available for surveillance each week to 
proportion μ (= 1%) of the total area. Sites at which the fungus is detected are treated (see §2.7) and recorded 
in a “known-infection” vector kt. We modelled three contrasting strategies for prioritising sites for 
surveillance , each incorporating kt in calculating relative risk factors for candidate sites, as follows:  

a) Rank each site i (not in kt) using a risk factor Ri,t equal to the distance to the nearest known infection site: 

Ri,t = mink(dik),  k ϵ kt  

b) Rank sites according to assumed risk of infection, applying an estimate C's of the social connectivity 
matrix and the environmental plume dispersal to known infected sites. The risk weighting of site i being 
infected from known-infected sites kt is calculated as  
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Ri,t = Σk Nk,t [1 – (1 – cp,ik)(1 – c's,ik)],  k ϵ kt, 

where c's,ik is the estimate of social interactions between sites i and k. We assumed that these estimates 
vary by ±25% from true interaction strengths, and that only estimates greater than u0 (set to 0.5) are 
included: i.e. c's,ik = v1cs,ik if v1cs,ik ≥ u0, and 0 otherwise, with the random variate v1 drawn from U(0.75, 
1.25). 

c) As (b) but perturbing the risk-factors further by multiplying by a random variate v2 drawn from U(0,1):  

Ri,t = v2Σk Nk,t [1 – (1 – cp,ik)(1 – c's,ik)],  k ϵ kt. 

This ranking procedure is similar to the risk-weighted randomised method of Parnell et al. (2014), which 
also re-ranks candidate sites each time-step, but sacrifices occasional sampling of sites with very low 
(assumed) risk for computational speed. 

These strategies give risk-weightings Ri,t of possible sites to survey, allowing a ranked schedule to be created 
for each strategy. The last site i = κ to be included in the survey is only partially surveyed so that the overall 
survey area is limited to μΩ = Σi πiAi, where πi is the proportion of site i surveyed (for surveyed sites, πi = 1, 
except πκ ≤ 1).  

2.7. Treatment and Quarantine  

Effective treatment of fungal infection often involves complete removal of the host plant. As the remaining 
fungal spores may persist in the soil for 
decades, however, we modelled treatment as 
reducing the density of fungal load to 1% of 
its maximum: K(mi,t) = 100 or 1 for mi,t = 0 
or 1, respectively.  

Following treatment, further spread of the 
pathogen is limited by quarantine 
restrictions, which we modelled by reducing 
each element within the connectivity matrix 
Cs to a base value cq,ij = min(cs,ij, q). We 
assumed q to be positive (q = 0.05) to 
represent some permeability of quarantine 
restrictions. In practice quarantine intensity 
often increases with proximity to an 
outbreak centre (Interstate Plant Health 
Regulation Working Group 1996). 
Therefore we also modelled a more risk-
based quarantine zonation, effecting the 
same overall reduction in connectivity but 
weighting the reduction by inverse-distance 
to known infected properties:  

ωq',ik = cs,ij dik
–1 /Σik dik

–1 , 

cq',ij = Σij(cs,ij – cq,ij) ωq',ij /Σij ωq',ij . 

More nuanced reductions of connectivity between specific sites could model progressive or adaptive 
quarantine zone implementation, e.g. radial nesting of quarantine intensity with respect to duration of 
incursion (Potts et al. 2013).  

We assumed that in extreme weather (Xt > 0), poor working and observational conditions or flooding events 
would prevent surveillance and quarantine operations. We left social connectivity unchanged in extreme 
weather conditions, however, on the assumption that close acquaintances would assist each other following 
the extreme events, counteracting their restricted movement during the actual storm.  

2.8. Implementation  

We simulated the progression and management of an incursion over 400 weeks (7.7 years, encompassing 8 
wet seasons). We used the same simulated spatial configuration of farms for each simulation, therefore our 
results here reflect the specific configuration shown in Figure 1. The social connectivity (Cs) between the 
farms, however, was generated stochastically for each simulation. We examined the contribution of each 

Figure 3. Simulation of 400-week uncontrolled incursion 
of a fungal pathogen infecting 100 farms (coloured lines), 
showing effects of spread by (a) soil-water, (b) storms, (c) 

humans and (d) all modes combined. The trajectories, 
which are the mean of 1000 simulations for identical spatial 

configuration, plateau out at fungal carrying capacities 
proportional to each farm’s area. 
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form of spread to the invasion, and the relative performances of the quarantine and surveillance 
combinations. We measured performance in terms of mean overall fungal load in the system (fungus-weeks), 
which can be loosely interpreted as relating to the agro-economic impact of the incursion.  

3. RESULTS AND DISCUSSION 

3.1. Incursion spread 

For our default parameter set, the fungal pathogen reaches all 
farms within four years if left unmanaged (Figure 3). The speed 
and extent of its spread depends on spread mode and associated 
connectivity through the system. If spread only occurs through a 
soil-water plume (Figure 3a), only those farms within the 
plume’s influence (roughly 50%) are susceptible. If spread only 
occurs via human socio-economic connections (for example, 
transported on footwear, vehicles, or machinery), all farms will 
eventually be affected although the transfer takes slightly longer 
than with soil-water alone (Figure 3c). Similarly, extreme 
weather events can spread the pathogen throughout the system 
albeit over a longer expected time-frame (Figure 3b). Combining 
all forms of spread hastens the entire system becoming saturated 
by the fungus (Figure 3d).  

3.2. Incursion management 

Implementation of quarantine failed to contain the pathogen due 
to the residual connectivity between farms (q = 0.05), but 
surveillance measures enabled early detection and successfully 
led to suppression of the pathogen in all farms (Figure 4). Fungal 
loads were limited to the lower, post-treatment carrying 
capacities, although in some cases infection exceeded these 
levels briefly prior to detection (“dips” in Figure 4). Results were 
surprisingly similar for all combinations of quarantine and 
surveillance strategies (Figure 4 and Table 1). There is a 
suggestion of a slight advantage to weighting quarantine efforts closer to properties with known infections, 
but essentially no difference between the three surveillance strategies investigated. If quarantine is 
homogeneously applied across the system, rather than focussed closer to known infections, incorporating 
social connectivity in surveillance prioritisation may reduce overall variability in performance. The results 
presented use the same spatial configuration of host properties, to allow for comparison between 
management strategies; however the performance was similar if the initial incursion site was randomly 
chosen (not shown). 

Previous modelling approaches have also shown similarity between heuristic surveillance strategies, which 
can out-perform purely randomised searching. Such strategies may perform almost as well as optimal 
strategies if some measure of risk is incorporated, for example, sampling potential Phytophthora ramorum 
sites based on a risk map or close to detected outbreaks (Demon et al. 2011), or allocating oak wilt fungus 
(Ceratocystis fagacearum) surveillance efforts according to expected proportion of infected trees per site 
(Horie et al. 2013).  

4. CAVEATS AND 
CONCLUSIONS 

Our model is intended to 
be a generic template, 
with the structure 
amenable to 
parameterisation for 
specific case studies. In 
real-world invasion 
scenarios, it would be 
particularly valuable to 

 

Figure 4. Managed incursions, with 
intensity of quarantine restrictions 

applied either uniformly (a) or 
distance-weighted to known infected 
properties (b). Surveillance sites were 

ranked by environmental dispersal risk; 
other surveillance rankings produced 

visually similar results. Trajectories are 
the mean of 1000 simulations for an 

identical spatial configuration. 

Table 1. Performance of quarantine and surveillance options, measured as a 
percentage of fungal load-weeks in the entire region, relative to the unmanaged 
system (Figure 3d). All figures are mean ± SD of 1000 runs scaled to the mean 
of the unmanaged system, 19.2 ± 0.7 million fungal-load-weeks (100% ± 4%). 

Quarantine restrictions: 
 
Surveillance basis 

Uniformly applied
 

(%) 

Weighted by proximity 
to known infections 

(%) 

Environmental 1.254 ± 0.588 1.241 ± 0.586 

+ social 1.246 ± 0.314 1.242 ± 0.636 

+ randomisation 1.246 ± 0.340 1.239 ± 0.550 

   

1266



Baxter et al., Quarantine and surveillance strategies for plant pathogens 

include greater spatial realism such as actual farm geometries; multi-directionality of abiotic drivers rather 
than a simplified unidirectional “plume”; structured social connectivity to include roads or market hubs; and 
heterogeneous establishment potential in the farms or surrounding landscape. The model could also be 
adapted to include greater dynamic realism such as within-site infestation dynamics, and changes in social 
connectivity and surveillance operations in response to weather conditions. These caveats, and the underlying 
assumptions that they imply, warrant further investigation, and are the subject of ongoing research, leading to 
the potential for case-specific parameterisation and optimisation of management performance.  
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