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Abstract: Predicting temporal responses of ecosystems to disturbances associated with industrial activities 
is critical for their management and conservation. However, prediction of ecosystem responses is challenging 
due to the complexity and potential non-linearities stemming from interactions between system components 
and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their 
often highly variable and complex natures and large uncertainties surrounding their dynamic responses. 
Consequently, current management of such systems often rely on expert judgement and/or complex 
quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an 
urgent need for the development of whole-of-systems predictive models to support decision and policy 
makers in managing complex marine systems in the context of industry based disturbances.  

This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine 
ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain 
in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via 
Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of 
each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the 
integration of a wide array of data, published and expert knowledge and other models. Such multiple sources 
are often essential as one single source of information is rarely sufficient to cover the diverse range of factors 
relevant to a management task. 

Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis 
seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the 
impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in 
established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery 
within 5 years (Environmental Protection Agency guidelines). The model is developed using expert 
knowledge, existing literature, statistical models of environmental light, and experimental data.  

The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental 
and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the 
zone of moderate impact, shoot density has a very high probability of being driven to zero by capital 
dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, 
the probability of recovery depends on the presence of seed banks. On the other hand, slow growing 
Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance 
dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of 
dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the 
biological and ecological status of the meadow, as well as environmental conditions post-dredging. The 
ability to predict the ecosystem response under cumulative, non-linear interactions across a complex 
ecosystem highlights the utility of DBNs for decision support and environmental management. 
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1. INTRODUCTION 

Recently, anthropogenic threats, such as urban and agricultural runoff, infrastructure development and 
dredging, have emerged as some of the greatest threats to the health and sustainability of marine ecosystems 
(Grech, Coles, & Marsh, 2011). This is especially the case for seagrass meadows, which have been declining 
at a rate of ~110km2 per year since 1980 (Waycott et al., 2009). However, predicting the impact of 
anthropogenic activities on marine ecosystems to support decision making is challenging. This challenge 
arises due to uncertainty about the system and about emergent outcomes (Hughes, Bellwood, Folke, Steneck, 
& Wilson, 2005). Therefore, it is inadequate to look only at recent events to ascertain the ‘cause’ of a 
collapse or loss as the loss is likely to be precipitated through interactions and cumulative effects over time. 
As a result, there is an urgent need for whole-of-system predictive models that are able to deal with 
uncertainty and risk in managing marine ecosystems. 

1.1. Dynamic Bayesian Networks 

One approach to encapsulating available data and knowledge in a whole-of-systems model is with a Dynamic 
Bayesian Network  (DBN) (Murphy, 2002). Bayesian Networks (BNs) provide a framework for knowledge 
representation and reasoning (Pearl, 1988). They provide a graphical representation of the system where 
nodes represent the variables or factors used to describe the system, and arrows describe the causal 
relationships between them (refer to Figure 4 for an example). BNs are typically constructed as a state space 
model where each factor is discretised into states. For the example in Figure 4, loss could be discretised into 
high and low loss states and the output from the BN the probability of being in the high and low states. The 
relationship between a child node and its parent nodes is encoded in terms of conditional probabilities 
relating parent states to child node states as part of a Conditional Probability Table (CPT). 

BNs have gained popularity in ecological applications in recent years as they provide a practical and 
scientifically credible framework for modelling complex ecological systems with uncertainty (Pollino, 
Woodberry, Nicholson, Korb, & Hart, 2007). They inherently provide a way to manage missing data and 
combine expert knowledge with data. In addition, the graphical depiction of the problem domain supports 
collaboration and articulate thinking about system components and interactions (Uusitalo, 2007). BNs have 
also demonstrated good predictive accuracy even with small sample sizes (Uusitalo, 2007). However, BNs 
are Directed Acyclic Graphs (DAG) which can not contain any feedback loops, a dominant feature of 
ecosystem dynamics. In addition, BNs can only provide an average or snapshot of a system over time. 
Therefore, by themselves, BNs are inadequate for the purposes of modelling the dynamics of complex 
ecosystems. 

DBNs, however, provide a way to model cumulative effects and emergent behaviour of dynamic complex 
systems (Murphy, 2002). The temporal element is captured in DBNs through the discretisation of time into 
‘slices’, whereby the BN is replicated at discrete points in time. It is the connections between time slices that 
enables the capture of feedback loops and cumulative effects as shown in Figure 1. Although they have been 
applied in other fields such as in the 
modelling of socio-technical infrastructure 
systems (Charitos, van der Gaag, Visscher, 
Schurink, & Lucas, 2009; Weber & Jouffe, 
2003), they are not yet prevalent in the 
modelling and decision support of 
ecosystems and especially seagrass 
ecosystems.  

1.2. Assessing Dredging Impact on 
Seagrass Using DBNs 

This paper specifically applies the DBN to 
the task of predicting the temporal response 
of seagrass meadows to dredging. Dredging 
is an integral part of port development and 
there are two types: capital dredging and 
maintenance dredging. As the names imply, 
capital dredging is about initially creating a 
navigable port for shipping and has a 
profound impact on the environment, 

Figure 1. Conceptual illustration of time slicing in a DBN 
for three variables: loss, recovery and some metric ܻ. Note 
the replication of the model (top) into slices (bottom) which

are joined by links between time slices. 
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whereas periodic maintenance dredging is of 
shorter duration and lesser impact (Suedel, 
Kim, Clarke, & Linkov, 2008).  

One of the key marine habitats that are 
affected by dredging are seagrass meadows 
(Waycott et al., 2009). Seagrass provides 
habitat for endangered species such as 
dugongs and green turtles as well as fishes, 
bird and invertebrate species. Seagrasses are 
also primary producers involved in nutrient 
uptake and cycling, providing ecosystem 
services of ~$1.9 trillion per annum 
(Waycott et al., 2009). As a result, the 
protection of seagrass meadows is of 
paramount importance worldwide.  

In order to plan dredging projects and perform an Environmental Impact Assessment (EIA), it is necessary to 
be able to predict the loss in seagrass habitat and whether it is able to recover within a specified time frame to 
original levels after dredging has finished. The Western Australia Environmental Protection Agency (EPA) 
deems an inability for seagrass meadows to come back within five years to be permanent loss (Environmental 
Protection Agency, 2009). Note that as part of an EIA, it is necessary to outline the zones affected by 
dredging as shown in Figure 2. In a spatial sense, the zones of interest in terms of managing impacts are the 
zones of influence and zones of moderate impact since losses are accepted in the high impact zone. 

It can be seen then that a predictive tool that can assess the probability of recovery is of key importance to 
making sound management decisions about dredging. 

1.3. Existing Models 

Currently, there are very limited tools available to assist decision makers for assessing dredging impacts on 
seagrass meadows. Some models are conceptual and therefore do not provide a means to quantitatively 
evaluate or predict impact. For example, Thomas et al. (2005) developed a conceptual, expert elicited model 
that represents ecosystem factors. Some other models are quantitative but are targeted at other usage 
scenarios and hence do not address some of the unique concerns surrounding dredging activities. The work of 
(Grech & Coles, 2010) predicts seagrass presence along the Great Barrier Reef (GBR) using a data and 
expert elicited BN. Presence is predicted according to season, location, relative wave exposure, temperature, 
substrate, flood plumes, tidal range and bathymetry. However, the model does not evaluate cumulative 
effects as the BN only provides an average assessment over time; thus it is difficult to evaluate the loss in 
seagrass following dredging and subsequent recovery (if at all). This is similarly the case for the work 
presented by Schultz, Borrowman, and Small (2011) which is also based on a BN.  

An alternative approach is presented by Sheridan (2004) which uses power law regression to predict recovery 
over a 5-year timeframe. Sheridan’s model is in effect a time series regression focused on explaining the 
recovery profile for a particular dredge site and does not capture more general predictive usage scenarios 
involving cumulative effects. Finally, Suedel et al. (2008) propose a decision support method based on an 
outranking method entitled SMAA-III (choose between alternatives using criteria that are evaluated via 
pairwise preferences). In this approach, the projected impact is in effect, expert elicited and the tool provides 
a way to assist decision makers in making trade-offs between the multiple economic, biological, physical and 
water quality criteria.  

As a result, it follows that despite extensive studies on seagrass meadows and their distributions and 
responses to disturbances in general, a quantitative ‘causal influence’ predictive tool (Pearl, 1988) can build 
upon this knowledge to provide better organised information for dredging decision support. 

2. DREDGING IMPACT ON SEAGRASS CASE STUDY 

An expert elicited DBN for evaluating dredging impacts on seagrass meadows was developed using the 
iterative development and expert elicitation guidelines in (Johnson et al., 2010; Pollino et al., 2007). At a 
high level, the model is concerned with loss and recovery as shown in Figure 4.  Biological and 
environmental factors contribute towards the ability to resist, which then affects how much loss is incurred 
under different environmental conditions. Specifically, the main hazards identified were related to light 

Figure 2. Illustration of the different impact zones as 
defined for a dredging EIA. 
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reduction, burial by sediment and sediment quality impacts (as a generic factor covering the many different 
types of sediment that could be exposed during 
dredging). On the recovery side, the main factors 
affecting the ability to recover include seed 
availability (such as whether a seed bank is 
present or not) as well as lateral growth from 
existing individuals.  

Loss and recovery are assessed with respect to 
metrics of interest ܻሺݐሻ. The main metrics as 
identified from regulatory and guideline 
materials were shoot density, biomass and aerial 
extent of the meadow (ANZECC ARMCANZ, 
2000; Environmental Protection Agency, 2009; 
Environmental Protection Authority, 2005). 
Each of the factors, also referred to as nodes, in 
the DBN are discretised into states. For example, 
shoot density is discretised into high, moderate, 
low and zero shoot density and light is 
discretised into above saturation and below 
saturation states.  

The discretisation of nodes into states is an 
implicit recognition of the uncertainty in the 
model and available data. Although there are 
datasets available, many of these contain only 
water quality metrics and/or overall biomass or 
shoot density; hence there are numerous data 
gaps. In addition, due to a combination of 
natural variability and uncertain marine 
environment, there is also uncertainty on the 
representativeness of observed measurements. 
Finally, there is uncertainty in the expert 
elicited relationships between the different 
factors both in terms of the structure of the 
model (although there was consensus in this 
case among seagrass and marine ecologists) 
and the strength of the relationships. As a 
result of both random and validation 
uncertainty (Pate-Cornell, 1996), discretisation 
into states provides a direct recognition of this uncertainty. Additionally, this discretisation is also useful as it 
provides a way to directly reflect regulatory guidelines. For example, ‘moderate’ shoot density is defined to 
reflect the meadow conditions necessary for moderate protection as per ANZECC ARMCANZ (2000). 

However, in order to incorporate experimental and observational data into the DBN, it is necessary to be able 
to transform between measurement values and these states. For this study, experimental data from the work 
of (Lavery, McMahon, Mulligan, & Tennyson, 2009; McMahon, Lavery, & Mulligan, 2011) was 
incorporated. Shoot density is measured in terms of the number of clusters or shoots per unit area, and light is 
captured in terms of both number of hours of saturating irradiance per day (HSAT) and the number of mols m-2 
of benthic light per day. The expert elicited simulation time step size for the model is one month. Therefore, 
it is also necessary to be able to transform between different time scales. Additionally, there can be 
substantial natural variations in these variables even without dredging. For example, light intensity (mols m-2 

d-1) itself follows a seasonal sinusoidal pattern as shown in Figure 3.  

One way to transfrom between continuous measurements and state probabilities across different time scales 
is to use a Bayesian hierarchical model (Bolker, 2008). For example, a simple random effects model is used 
to model the probability of being above saturation for light: 

 
ܾ௜~ࣨሺߤ, ߬ሻݎ௜~ࣜሺ݌௜, ݊௜ሻ  (1) 

 

Figure 4. Conceptual illustration of the BN and the 
structure of the model. 

Figure 3. Benthic light intensity – note the seasonal 
sinusoidal pattern. The (periodic) linear regression line is 

intensity ܻ = Asinሺ2ݐߨሻ ൅  .is the date ݐ ሻ whereݐߨሺ2	cosܤ
The adjusted ܴଶ = 0.8134. 
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where ݎ௜ is the number of days of above saturation light in 
month ݅,	modelled as a Binomial distribution with parameters ݌௜ (probability of above saturation) and ݊௜ (number of trials). ݌௜ comes from a Normal distribution via the logit transform ܾ௜ =  ௜ሻ to capture random effects and uninformed݌ሺݐ݅݃݋݈
uniform priors are used. Overall, for Amphibolis in Jurien 
Bay, the probability of being above or below saturation light 
is captured in Table 1. 

Using the approach outlined above, the model is evaluated 
over a range of dredging scenarios corresponding to: (i) a 
tropical Halophila meadow using data from James Price Point 
(Western Australia) versus a temperate Amphibolis meadow 
from Jurien Bay (Western Australia), (ii) different durations 
of dredging, (iii) whether there are burial effects or not, (iv) 
whether there are sediment quality effects or not, and (v) 
whether the meadow was initially in good or poor 
physiological condition. The model was developed with 
seagrass experts and validated by a larger panel of experts 
which included other 
seagrass experts as well 
as other marine 
ecologists/biologists. 
As can be seen from 
Figure 5, experts 
predominantly 
expressed moderate to 
high confidence in the 
model.  

2.1. Results and 
Discussion 

Consider firstly the 
scenario of capital 
dredging involving 
continuous dredging for 
twelve months. For 
both Amphibolis and 
Halophila, the meadow 
is driven to zero as 
shown in Figure 6. 
Note that the top plot 
shows the probability of 
being in high, moderate, low or zero state over time from 2015 through 2022 and the bottom plot shows the 
weighted mean (assuming a uniform distribution) of the expected value and the interquartile range. Recovery 
occurs in both cases; however, the trajectories are markedly different. The Halophila meadow is in a tropical 
climate and has an annual meadow where the abundance declines to zero during the wet season and comes 
back during the dry season. This pattern is depressed during the period of dredging but comes back as soon as 
dredging pressures are removed. On the other hand, the Amphibolis meadow is a persistent one growing in a 
temperate climate and does not have large seasonal fluctuations. After dredging, it slowly recovers over five 
years to pre-dredging levels. In comparison, the maintenance dredging scenario produces a completely 
different response (Figure 7). For Amphibolis with good initial physiological status, the meadow is able to 
resist loss in that it does not go to zero and recovers faster; however, when it is in a poor physiological state 
initially, the meadow once again declines to zero even with a reduced dredging duration. 

3. CONCLUSION 

Here we demonstrate the application of DBNs to the problem of predicting complex ecosystem responses to 
dredging. The framework provides a tool to integrate expert knowledge with data in a whole-of-systems 

Table 1. Probability of above saturation light 
over the year for natural conditions P(control) 

and anticipated dredging conditions 
P(reduced). Derived from Bayesian 

hierarchical model in (1). 

Month P(control) P(reduced)
Jan 0.998 0.144 
Feb 0.998 0.005 
Mar 0.998 0.031 
Apr 0.998 0.015 
May 0.890 0.003 
Jun 0.771 0.003 
Jul 0.998 0.004 
Aug 0.998 0.004 
Sep 0.998 0.004 
Oct 0.998 0.004 
Nov 0.998 0.005 
Dec 0.998 0.054 

Figure 5. Count of experts and their level of confidence expressed in different 
parts of the model. 
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model that predicts cumulative effects in a bottom-up approach. A case study evaluation of two different 
types of seagrass meadows shows the utility of the approach in characterising the ecosystem response over 
time in a probabilistic sense as the probability of going to zero is especially important from a decision 
making perspective. Future work includes the adaptation of the DBN to data, analysing dynamic responses 
from a resilience perspective, and customising dashboards from model outputs to support decision making. 
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Figure 6. Loss and recovery in shoot density for capital dredging for Amphibolis (on left) and Halophila (on right). 
The grey bar indicates a 12 month capital dredging program. Top plots are the probability of each shoot density 

state and the bottom plots show the weighted mean of the expected value and the interquartile range.

 

Figure 7. Loss and recovery in shoot density for a 6 month maintenance dredging program for Amphibolis with 
good initial physiological status (on left) and poor initial status (on right). Compare with Figure 6. 
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