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Abstract: NARCliM (NSW/ACT Regional Climate Modelling project) is a regional climate modelling 
project for the Australian area. It provides a dynamically downscaled climate dataset for the CORDEX-
AustralAsia region at 50km, and South-East Australia at a resolution of 10km. NARCliM data is being used 
by the NSW and ACT governments to design their climate change adaptation plans. Data is available through 
the AdaptNSW website (http://climatechange.environment.nsw.gov.au/). 

NARCliM uses version 3.3 of the Weather Research and Forecasting (WRF) regional climate model (RCM) 
to perform an ensemble of simulations for the present and the projected future climate. WRF is run in three 
different model configurations (different combinations of physical parametrizations) that have been shown to 
perform well in the South-East Australia and were chosen based on performance and independence. These 
three RCMs are used to simulate three different periods: 1990-2009, 2020-2039 and 2060-2079. Four 
different Global Climate Models (GCMs: MIROC-medres 3.2, ECHAM5, CCCMA 3.1 and CSIRO mk3.0) 
from CMIP3 are used as initial and boundary conditions for the WRF simulations. These GCMs were chosen 
through a process that considered model performance, independence and projected future changes. Thus a 
RCM ensemble of 12 simulations for each period is obtained. Additionally to the GCM-driven simulations, 3 
control run simulations driven by the NCEP/NCAR reanalysis for the entire period of 1950-2009 are also 
performed in order to evaluate the RCMs performance in the area. 

The NARCliM ensemble is found to have a consistent cold bias throughout the year with many areas 
showing the ensemble members significantly agreeing on the bias. This bias is significant over most of 
southeast  Australia in winter and summer. The ensemble also displays a consistent wet bias with most of 
southeast Australia showing significant agreement amongst ensemble members on this bias in summer and 
autumn. A dry bias is present on the southeast coast in winter 

The regional models are found to do a reasonably good job at capturing the teleconnections with large scale 
climate modes such as El Niño – Southern Oscillation (ENSO), when compared to the driving global data. 
Each regional model displays differing strengths and weaknesses in this respect. 
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1. INTRODUCTION 

Future climate change has been recognised as one of the largest issues facing the world in the coming 
century. The Intergovernmental Panel on Climate Change (IPCC) has been tasked with compiling the state of 
knowledge in relation to climate change on a regular basis. These assessments are the basis of knowledge 
used by most governments to establish climate change related policy including the ongoing debates around 
the introduction of a price on greenhouse gas pollution. 

Global Climate Models (GCMs) are the main tools used to project the extent of future climate change. The 
Coupled Model Intercomparison Project 3 (CMIP3, Meehl et al., 2007) was the international collaborative 
effort of GCM groups to produce projections that directly informed the IPCC fourth assessment report 
(IPCC, 2007). This database of global climate projections has been widely used to investigate global climate 
system processes as well as large scale climate change projections (Marriotti et al., 2008; Evans, 2009a; 
Vavrus et al., 2009; Evans 2010). This construction of a many GCM ensemble is vital for dealing with the 
uncertainty associated with future projections. Every GCM, that performs adequately for the recent past, is 
considered to provide a plausible projection of future climate and it is difficult to know which of these 
plausible futures is more likely. Hence the use of a multi-model ensemble is required to provide some 
measure of likelihood of the projected future climate. 

As the risks associated with large scale climate change have become better understood, more impact and 
adaptation studies have been performed. A considerable spatial scale problem exists between the scale of the 
GCMs (200-400km) and the scales of interest for impacts and adaptation studies which are often only tens of 
kilometres or less. In order to address this spatial scale problem various methods to downscale the GCM 
output have been developed. These downscaling methods can be generalised into two types: statistical and 
dynamical. Statistical downscaling involves deriving statistical relationships between some large scale 
predictors and the local variable of interest. It is then assumed that this statistical relationship remains true in 
a future changed climate and hence can be used to downscale both the present and the future climate. 
Dynamical downscaling uses mathematical representations of the physical processes that create the climate 
system, similar to GCMs, applied at a higher spatial resolution than the GCMs. In this way they are able to 
capture climate phenomena not resolved by the GCMs including the influence of mountains and coastlines 
and local land-atmosphere feedbacks (Zaitchik et al., 2007a,b). Dynamical downscaling is done with a 
Regional Climate Model (RCM). When downscaling future climate projections RCMs assume that the 
physical laws remain the same. Statistical downscaling techniques can also be applied to RCM output in 
order to provide information at point locations. 

One advantage of statistical techniques is that they are less computationally intensive and hence can be used 
to downscale many GCM (or RCM) climate projections. This allows the statistical techniques to be applied 
to many climate models and hence they can span the range of plausible future climates. RCMs on the other 
hand, are quite computationally intensive and to date this has prevented them from being used to downscale 
many GCMs, hence they have not sampled the full range of plausible future climates. This issue has been 
addressed in a number of large international projects focused on Europe (PRUDENCE - Christensen and 
Christensen (2007), ENSEMBLES - van der Linden and Mitchell (2009)) and North America (NARCCAP - 
Mearns et al. (2009)) that produced large ensembles of RCM simulations. PRUDENCE was the first attempt 
to produce a RCM ensemble through a large cooperative international program. In this case several RCMs 
were used to downscale the same GCM thus providing a measure of the uncertainty associated with RCM 
simulations but not placing this within the context of plausible future climates simulated by GCMs (Deque et 
al., 2005). Both ENSEMBLES in Europe and NARCCAP in North America, have attempted to address this 
issue by using a collection of RCMs to downscale a collection of GCMs. While these projects have found 
significant spread amongst the RCMs it has generally been smaller than the spread found in the full GCM 
ensemble (Fowler et al., 2007). Thus, an emphasis on sampling the GCM ensemble more comprehensively 
has been recommended (Kendon et al., 2010).  

Regional benchmark statistics include both general comparisons of observed and modelled variables, as well 
as metrics aimed at particular phenomena such as the onset and evolution of the monsoon. Many studies have 
looked at various aspects of the climate system to evaluate RCMs, often with a focus on temperature and 
precipitation as these are the best observed climate variables. For example, Evans et al. (2005) investigated 
the performance through time of many variables but only for a single grid point. Kostopoulou et al. (2009) 
looked at maximum and minimum temperature on a seasonal basis. Evans et al. (2004) and Evans (2009) 
used temperature and precipitation on climatological and monthly time scales. Solman et al. (2008) looked at 
seasonal means and cycles, inter-annual variability and extreme events in precipitation and surface air 
temperatures. Evans and McCabe (2010) evaluated a RCM against precipitation and temperature at daily, 
monthly, inter-annual and multi-annual time scales including the representation of El Niño - Southern 
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Oscillation (ENSO) and the impact of drought. 
In addition Argüeso et al. (2012) evaluated the 
ability of an RCM to simulate both the mean 
and extreme precipitation over Spain. 

When studying future regional climate changes 
there are many different sources of uncertainty. 
Here these sources of uncertainty are broken 
down into three main sources (ignoring internal 
variability), a different but similar way to 
categorise these sources of uncertainty can be 
found in Foley (2010). The first source, and one 
of the largest unknowns, is the future emissions 
of greenhouse gases. Since this is dependent on 
human activities and policy actions, the future 
evolution of greenhouse gas emissions is 
presented as a series of possible emission 
scenarios or projections. These scenarios are 
then used in GCM simulations to study the 

impact on climate. At the climate model grid scale we do not solve the known fundamental physical laws 
controlling the climate system but approximate them which is the second source of uncertainty. This 
uncertainty is embodied in the GCM model physics and numerical structure. The last main source of 
uncertainty is the downscaling method itself. In the case of RCMs this includes the model physics and 
structure similar to issues associated with GCMs. In combination these sources of uncertainty provide a limit 
to the confidence that can be placed in any particular projection of future regional climate. 

Quantifying this uncertainty is done by creating a collection, or ensemble, of climate simulations that sample 
various parts of the uncertainty described above. Emission scenario uncertainty is addressed by running 
simulations from more than one scenario. To quantify the uncertainty associated with GCMs an ensemble of 
many GCMs should be used and similarly for RCMs (or dynamical downscaling) many RCMs should also be 
used. Ideally these GCMs and RCMs would be independent of each other ensuring they are sampling from 
different parts of the plausible future climate space. Once an ensemble which samples these uncertainties has 
been established there are multiple methods for combining the information to establish a comprehensive 
future climate change prediction.  

2. THE NARCLIM PROJECT 

The NARCliM ensemble has been designed to produce 12 regional climate model projections (Evans et al., 
2014). Twelve RCM runs were selected as a minimum number of runs to improve the probability of 
capturing the range of possible future climates. The process of developing the 12 projections first includes 
the selection of the GCMs that will be downscaled. The project uses four independent GCMs to provide the 
boundary conditions for three RCM simulations each, for a total of 12 projections. The GCM selection 
process was based on a combined evaluation of GCM performance in simulating recent climate for this 
region, contain independent model errors (Evans et al., 2013) and that provide an ability to span the range of 
future climate change projections. The three RCMs were similarly chosen based on model performance (Ji et 
al., 2014) and error independence. Three 20 year simulations were performed with each of the 12 GCM/RCM 
combinations, for the present day (1990-2009) and two future periods, 2020-2039 and 2060-2079. In addition 
to the GCM driven simulations the RCMs used boundary conditions from reanalysis to produce long (60-
year) historical simulations. The NARCliM domain is shown in Figure 1. The large outer domain is modelled 
using ~50km resolution while the inner high resolution domain is modelled using ~10km resolution. The 
resolution is chosen in order to capture important local land-atmosphere coupling feedbacks (Evans et al. 
2011). The RCMs chosen are three different configurations of the Weather Research and Forecasting (WRF) 
model that has been shown to perform well over the region across a range of time scales (Evans et al. 2012; 
Evans and Westra, 2012; Evans and McCabe, 2013). 

Figure 1. AustralAsia domain and topography. The red 
rectangle outlines the high resolution south-east Australia 

NARCliM domain. 
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3. RESULTS 

The RCMs have been investigated for their ability to reproduce observed relationships between local climate 
variables and large scale oceanic modes. Figure 2 shows a summary of the model ability to capture the 
correlation between precipitation in various regions and large scale mode indices averaged during 
September-October-November (SON). The observed correlations are given by the Australian Water 
Availability Project (AWAP – Jones et al., 2009) data in the top left panel which provides the pattern of 
correlations that the models are attempting to simulate. The NCEP/NCAR Reanalysis Project 1 (NNRP – 
Kalnay et al., 1996) data correlations are shown in the centre left panel. NNRP provides the boundary 
conditions used to drive the three regional models R1, R2 and R3. 

Figure 2 shows that NNRP underestimates the correlations of rainfall with the Indian Ocean Dipole (DMI) 
while the regional models are better able to capture the strength and spatial extent of this correlations. NNRP 
also underestimates the correlation with blocking, with both R2 and R3 producing similar underestimates, but 

Figure 2. September-October-November regional spatial mean time-series correlation with different 
climatological indices for precipitation (pracc) in observations (AWAP), NNRP reanalysis and three regional
climate model configurations using NNRP as input. Only correlation values above the 95 % confidence level 
are plotted. Blocking = atmospheric blocking in the Tasman Sea, DMI = Dipole Mode Index, SOI STD =
Southern Oscillation Index standard deviation, SAM = Southern Annular Mode, IPO = Inter-decadal Pacific 
Oscillation, NINO3.4 = sea surface temperature in the 3.4 box in the Pacific (a measure of the El Nino
Southern Oscillation, NINO1+2 = as for NINO3.4 but in the 1 and 2 boxes
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R1 better able to capture the strength and spatial extent. The strongest correlations are found with the tropical 
Pacific Ocean indexes SOI and Nino 3.4. Again it can be seen that NNRP underestimates the strength and 
spatial extent of these correlations while the regional models do a much better job. In particular NNRP fails 
to capture these correlations in regions 8, 9, 11 and 14 which all cover parts of southeast Australia. It is clear 
that the RCMs do a generally better job at capturing the pattern of correlations compared to the driving 
reanalysis though for each model cases of poorer performance can be found. Similar analysis across all 
seasons confirms the general improvement achieved by the RCMs. 

Investigating the biases of the climate model ensembles reveals a spread amongst the models which reflects 
to a large extent the spread in the GCM CMIP3 ensemble but also includes variations due to the three 
different RCMs. Figure 3 shows the biases in precipitation in the host GCM and the RCM ensembles. While 
some of the wet bias found in the RCM ensemble is inherited from the host GCM ensemble, some aspects 
such as the coastal dry bias in all seasons in the GCM ensemble is not present in the RCM ensemble. This 
difference is very evident in spring where the GCMs have dry biases for large parts of regions 7, 11 and 14. 
We can see that in the eastern portion of region 7 the RCM ensemble also produces a dry bias, while for large 
parts of regions 11 and 14 the RCM ensemble produces a wet bias. Given the relative correlations shown in 
figure 2, the large differences in biases seen here correspond to regions where different strengths of tropical 
Pacific Ocean teleconnections are found between the RCMs and driving model. Correlations with blocking 
and SAM are reasonably similar in the RCM simulations and improve upon NNRP, with some regional 
exceptions.  

 

4. CONCLUSIONS 

While the NARCliM RCMs do not exactly reproduce the observed teleconnections with large-scale climate 
modes seen in observations, they do reproduce the overall structure and improve on the driving global model 
(NNRP in this case). Here we have shown that the RCMs improve on the correlations found using the NNRP 
reanalysis even though the RCMs do not assimilate data within the domain while the reanalysis does. 

The present day precipitation biases are quite similar for the NARCliM RCM ensemble and the driving host 
GCM ensemble with some exceptions. The largest difference occurs in Spring when an extensive dry bias in 
the host GCMs is not matched by the RCMs in regions where they have significant correlations with tropical 
Pacific Ocean climate mode indices that the driving reanalysis did not. This suggests that differing 
simulations of teleconnections between host model and RCM may affect the overall climate produced. This is 
a work in progress and further work is needed to investigate the host GCM produced climate modes and 
teleconnections. And to understand whether the differences found between the NNRP simulated 
teleconnections and the RCM (driven by NNRP) teleconnections can be generalized to other global scale host 
models. 
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