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Abstract: Austin Health (AH) currently operates inpatient Continuing Care services across two satellite cam-
puses, and faces the problem of calculating the optimal number of beds needed in its subacute wards. It is
inefficient if a patient needs to wait in an acute ward for a bed in a subacute ward, just as is operating too
many beds in the subacute ward to always meet demand. In recent years the demand for acute beds has in-
creased, creating pressure for faster patient movements and more admissions at times of high demand, with
the consequent need to determine best-performing bed configurations. Additional constraints, related mostly
to availability of medical resources, were of concern to AH staff and were considered when developing the
model. The subacute bed allocation problem is significant because it cannot be formulated in closed form us-
ing simple probability distributions, but demands the use of actual variable data on admissions and separations
to ensure a reliable result. The solution approach we used to tackle the problem is based on the combined
use of the cross-entropy method for optimisation. It uses the simulation of subacute ward occupation and
demand using a parametric bootstrap to generate data to solve this problem. We used a simulation model to
represent the six wards under study and the dynamic relationships that describe this system. To obtain the
optimal bed configurations, we use the cross-entropy method for optimisation. This is a modern optimisation
method whose working principle is based on the fact that cross-entropy divergence can be used as a measure
of closeness between two sampling distributions. Optimisation by cross-entropy estimates a sequence of para-
metric sampling distributions that converges to a distribution with probability mass concentrated in a region
of near-optimal solutions. We used a parametric bootstrapping approach to generate the admission data that is
used as an input to the optimiser. The expected result is a slight increase in the number of existing beds. We
justify the effectiveness of the proposed approach for determining the optimal number of beds on the grounds
that the actual results and the general behaviour of the optimisation software in its current version match the
intuition of hospital staff on the behaviour of the system.

Keywords: e-Health, subacute bed allocation, cross-entropy optimisation, parametric bootstrap, hospital
capacity planning
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1. INTRODUCTION

In Australia, the number of people aged 65 and over is projected to increase to more than double the current
2015 figures by 2054-2055 [The Treasury, Australian Government, 2015]. As Australians will live longer and
continue to have one of the longest life expectancies in the world, there will be fewer people of traditional
working age compared with the very young and the elderly. This trend is already visible, with the number of
people aged between 15 and 64 for every person aged 65 and over having fallen from 7.3 people in 1974-75
to an estimated 4.5 people today. By 2054-55, this is projected to nearly halve again to 2.7 people.

The allocation of limited and costly health services to an ageing population is a tremendous challenge recog-
nised by government and industry alike: see, for example, Rosen et al. [2010] and Motorola [2010]. The need
for increased data collection, smarter decision making and improved logistic processes is widespread and ur-
gent, as current policies and practices clearly lead to increasing costs, less effective healthcare, and may even
put patient safety at risk. In this paper, we contribute to ameliorate this situation by tackling the problem of
calculating the optimal number of beds needed in the subacute wards of a major hospital.

Austin Health (AH) currently operates inpatient Continuing Care services across two satellite campuses that
are separate from the acute hospital: the Heidelberg Repatriation Hospital (HRH), which provides Geri-
atric Evaluation and Management and Rehabilitation Care types, and the Royal Talbot Rehabilitation Centre
(RTRC), which provides Rehabilitation Care only. Apart from the opening of a 24 bed geriatric ward at the
HRH in 2008 and the closure of five rehabilitation beds on the RTRC in 2013, the number and configuration
of beds has remained largely unchanged. In recent years the demand for acute beds has increased, creating
pressure for faster patient movements and more admissions at times of high demand. Additional constraints,
some of which are specific to each campus, were of concern to AH staff. Most of these relate to access to
medical resources, as for example support services such as pathology, radiology or staff’s expertise, but others
were related to funding, transportation or general bed access and availability. Although not all of these were
considered in the development of the optimisation model, the possibility of doing so was discussed with AH
staff.

Different approaches have been used in the past to solve this problem. Bachouch et al. [2012] use an integer
linear model for hospital bed planning for acute and elective patients. This study emphasised the role of restric-
tions such as patient assignment to double rooms with consideration to compatibilities between pathologies, or
having patients with contagious diseases in separate rooms. Some of the assumptions of this study are not easy
to justify, e.g., the length of stay is known, and that there are no changes of bed through the hospitalisation.
Simulation has also been commonly used to tackle this problem. Wang et al. [2011] developed a queuing
model for emergency and acute care bed allocation for various hospitals to answer the question of how to dis-
tribute beds across hospital wards in order to maximise the quality of patient care. Zhang et al. [2012] present
a combined simulation and optimisation approach to determine long-term bed capacity levels in a Canadian
hospital over a multi-year planning horizon, and compare it to a fixed-ratio approach used in practice. The data
is assumed to follow a Poisson distribution for arrivals and a Weibull distribution for length of stay (LOS), and
a bisection method is selected as the optimisation algorithm. Other papers adopt a queue-theoretical approach.
In de Bruin et al. [2010], an Erlang loss model was introduced to test the validity of the current guideline of
85% occupancy in Dutch hospitals. In contrast to de Bruin et al. [2010], our study considers the difference in
arrival patterns by day of the week, including weekends.

In this paper, we present a solution approach based on the combined use of the cross-entropy (CE) method for
optimisation [Rubinstein, 1997, 1999; Rubinstein et al., 2013], the simulation of subacute ward occupation,
and parametric bootstrapping of the data. To the best of our knowledge, CE has only been used in the health
sector to determine thresholds on histograms to analyse staining in epithelial cells in Neves et al. [2014]. We
used a simulation model to represent the six wards under study and the dynamic relationships that describe this
system. To obtain optimal bed configurations, we complemented the simulation with the cross-entropy method
for optimisation. The proposed analytical method gives AH not only the ability to optimise service delivery
by calculating the necessary number of beds based on existing admission records, but also a rigurous method
to foresee demand for admissions that is more robust than the previous method based on crude averages.

2. SUBACUTE BED ALLOCATION

This study comprises four wards in the HRH, referred to as a, b, c and d, and two in RTRC, named x and
y. The wards in HRH currently have a total capacity of 104 beds and are dedicated to geriatric evaluation
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Figure 1. Representation of patient flows from origins to subacute wards (left) and combined 
simula-tion/optimisation approach used to solve the subacute bed allocation problem (right).

and management and to rehabilitation, whereas the wards in RTRC accomodate 42 beds, mostly dedicated to
rehabilitation. Figure 1a shows a schematic of patient flows. Patients may arrive from the community, other
hospitals, the Emergency Department of AH and other wards. For the purpose of this paper, the origin of the
patients is irrelevant. Transfers between wards most often represent a care type change, e.g., acute to subacute,
but there are also transfers between subacute wards that do not involve a care type change and also need to be
captured. A small percentage of patients arriving to ward b may be transferred to a.

We performed a preliminary analysis of admission data to try to identify patterns in admission times and
lengths of stay. As part of this analysis, we tried to determine if the patients’ ailments, identified by AN-SNAP
codes1 were correlated to the wards the patients were admitted to. We used correspondence analysis to clarify
the relation between patients’ ailments and assigned wards (correspondence analysis is a method to compare
data to the assumption of independence). We found that 78.8% of the variability corresponds to these two
dimensions. Nevertheless, we did not use the patients’ ailments directly for regression as many of the AN-
SNAP codes were shared among most wards in HRH and therefore they did not perform well as explanatory
variables.

3. METHODOLOGY

The approach we propose, shown in Figure 1b, combines simulation and optimisation to produce the optimal
number of beds per ward given the bed demand data as follows. First, simulation is used to reproduce the pa-
tient stays in beds, using as input the appropriate inter-arrival times between patients obtained by bootstrapping
actual admission data. Parametric bootstrap is used to feed the simulation process with random admission data
that closely follow past and current admission trends, as described in subsection 3.1. The output of the simu-
lation is then summarised in statistics, which are used as the criterion for optimising bed allocation. Second,
optimisation, which is represented in Figure 1b as the outer loop, searches for the optimal combination of
numbers of beds on each ward. With the proposed numbers of beds per ward and bootstrapped admission data,
the inner simulation loop runs multiple simulations in parallel on every iteration with the aim of assessing the
performance of bed arrangements. This is done by calculating performance statistics using the results of all the
simulations in the current iteration of the optimisation loop. The rules that define the individual simulations
are explained in subsection 3.2. If the outcome of the inner simulation loop fulfills some predefined termina-
tion criterion, the optimisation terminates and we have an optimal (or near-optimal) solution; otherwise, the
summary statistics are fed back into the optimisation algorithm (in this case the cross-entropy method, whose
working principle is explained in subsection 3.3) and used to direct the search for a new and improved com-
bination of numbers of beds on each ward. The remainder of this section explains each of the components of
the solution approach in more detail.

1The Australian National Subacute and Non-Acute Patient (AN-SNAP) classification Version 3, from
http://ahsri.uow.edu.au/content/idcplg?IdcService=GET FILE&dDocName=UOW119626&RevisionSelectionMethod= latestReleased,
accessed on January 20 2015.
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3.1. Input data and parametric data bootstrap

We built the list of events of the simulation using two types of data sets:

1. Actual data. This is the actual data set provided by the hospital, which contains information about
patient arrivals and lengths of stay.

2. Artificial data. These data sets were calculated using parametric bootstrap. The bootstrap uses linear
regressions from a previous study [Garcı́a-Flores and Sparks, 2014] to simulate admission data and
length of stay. The models used log-normal for first daily arrivals, logistic regression for simultaneous
arrivals, Box-Cox t distribution for lengths of stay, and gamma distribution with changing parameters
for day of the week and season for inter-arrival times.

Bootstrapping enables us to feed the simulator with data that captures the existing patterns of patient admis-
sions from the original records. More specifically, the artificial data sets simulate the rules and criteria used
to assign wards to patients and also reproduce the necessary transfers between wards, which are built into the
regression models used to produce the data sets.

3.2. Simulation

All beds are empty at the start of the simulation. The calculation of metrics begins only after a number of
simulation days have passed, in order to let the simulation process reach steady state. The patients occupy
a ward according to the following logic: every admitted patient has a ‘preferred’ ward, that is, the ward the
patient was assigned to according to the actual records, or according to the distributions obtained from the
actual records and which were used to produce the bootstrapped data. This preferred ward comes from the
admission records provided by the hospital. If there is a bed available in this ward, the patient is admitted
there. If not, we define ward precedence as the two groups of wards for HRH and RTRC that represent the
order in which the simulation looks for empty wards. For example, suppose that the preferred ward for an
admission is a, which belongs to the first group of wards. The simulator will first try to find a bed in a, and
if this is not possible, it will attempt to do so in b, c and d, in that order, and if it still cannot find a bed, this
patient will go to the queue and keep a as a preferred ward. If the patient in the above example finds, say, a bed
in d, the simulation registers this as a ward mismatch, but if the patient does not find a bed at all then he/she
will join the queue and wait for a bed at a later day.

The performance of a single simulation run is assessed according to:

performance =−10.00 ∗ total patient-days in queue
−100.00 ∗ total ward mismatches
+900.00 ∗ average bed occupancy
−20.00 ∗difference from current bed use, (1)

where the weights [-10.00, -100.00, 900.00, -20.00] can be modified according to the priorities of AH staff.
The last term is justified on the grounds that there is a small cost opening and closing beds. The assumption is
that the current system mostly has patients allocated to the right wards.

3.3. Optimisation

Cross-entropy estimates a sequence of parametric sampling distributions that converges to a distribution with
probability mass concentrated in a region of near-optimal solutions. Consider the optimisation problem
maxx∈X S(x), having X ∗ as the set of optimal solutions. Let v the reference parameters of a family of
probability density functions (PDF) F = { f (·;v),v ∈ V } on X ∗. Cross-entropy (Algorithm 1) generates a
new F on each iteration, converging to X ∗ and terminating with a solution in the form of a set of degenerate
distributions.

4. RESULTS AND DISCUSSION

We conducted the experiments as follows. First, actual admission data was used to calculate the optimal num-
ber of beds in all wards considering two cases, one in which ward b is included in the analysis, and one in
which b is not included, in which case admissions to b will not be considered as input to the subacute optimisa-
tion problem, unless they are transferred at the end of their stay in b to another subacute ward. These scenarios
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Algorithm 1 – Cross-entropy for subacute bed allocation

1: Choose an initial parameter vector v0 = v̂0; t← 1; d← 5.
2: while v̂t−d 6= v̂t do
3: Generate a sample X1, . . . ,XN from the density f (·;vt−1) .
4: Compute the sample’s (1−ρ) quantile γ̂t of the performances

γ̂t = S(Xk,d(1−ρ)Ne) ,

where de denotes the integer part.
5: Use the same sample to find the optimal reference parameter ṽ by cross-entropy maximisation, using the

following expression obtained from a Bernoulli distribution (see Rubinstein et al. [2013] for details):

v j =
∑

N
k=1 I{S(Xk)≥γ̂t}Xk j

∑
N
k=1 I{S(Xk)≥γ̂t}

, (2)

where I{S(Xk)≥γ̂t} is an indicator variable that takes the value 1 if condition S(Xk) ≥ γ̂t is met, zero
otherwise.

6: Smooth to avoid zero values of ṽ in the first iterations: v̂t = α ṽ+(1−α)v̂t−1
7: t← t +1.
8: end while
9: The solution is the single value of the degenerate distribution defined by v̂.

were requested because ward b has a different patient care mix than the other wards, despite providing the
same care type. The patients have a much shorter length of stay (7 days on average), compared to 24 on av-
erage across the other wards; besides, patients are mostly admitted directly from the Emergency Department.
Second, we prepared three additional data sets using the bootstrapping procedure described in subsection 3.1
and repeated the simulation four times, one for the raw data set and one for each bootstrapped data set. The
global performance measure of the corresponding simulation run is in this case the average of the individual
performance measures as calculated using Equation (1). When using the bootstrapped data, we also tested
the optimal number of beds on every ‘free’ ward considering that the number of beds in all the other wards
remained fixed, according to the current numbers of beds in use (i.e., the reference values). For example, if
ward a is free, the code optimises the number of beds in this ward only, considering that the number of beds
in the other wards is fixed to 24 in ward b, 28 in c, 28 in d, 30 in x and 12 in y.

Table 1 shows the results, obtained using a Dell PowerEdge R630 Rack Mount Server with two Intel Xeon
E5-2690v3 at 2.6GHz (48 cores), coded in the R language2. These indicate that the total number of beds
should increase between two and eight beds, depending on the run. When optimising the number of beds of
individual wards, the results also show that the optimiser consistently recommends increasing the number of
beds in one or two in most cases. Comparing the number of beds needed in winter versus the number of beds
needed in summer for every year from 2010 to 2013 (not shown due to space limitations), we found that the
beds needed in winter periods are greater than those needed in the summer, which is an expected result given
the experience of AH staff.

5. CONCLUSIONS AND FURTHER WORK

The allocation of limited and costly health services to an ageing population whose demand for healthcare
is increasing is a tremendous challenge. In this paper, we tackled the problem of calculating the optimal
number of beds needed in the subacute wards of a major hospital. Our methodology combined the cross-
entropy method for optimisation, the simulation of subacute ward occupation, and parametric bootstrapping
of the data. CE is a modern optimisation method based on the fact that cross-entropy divergence can be used
as a measure of closeness between two sampling distributions, shifting the sampling of the solution space
towards a region of near-optimal solutions. The optimiser matches hospital staff intuition on the mechanics
of admissions and recommends a moderate increase in the current number of beds. The model can be easily
extended to consider additional information when it becomes available, e.g., actual waiting times or more

2Version 3.1.2, from http://cran.r-project.org/, accessed on January 8, 2015.
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accurate ward allocation rules.

Although the proposed methodology is sound, relatively fast and easy to implement, it has shortcomings.
First, CE is a heuristic, and as such it does not guarantee an exact optimal solution on every run. Second, the
performance of the method depends on the number of simulation runs per iteration, and this is limited by the
capacity of the computer used to solve the problem. Third, there may be some bias in the distributions used
for bootstrapping, the magnitude of which is documented in Garcı́a-Flores and Sparks [2014]. Despite these
shortcomings, the method has been shown to be practical, well behaved and to produce results that are in line
with AH staff’s expectations.
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