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Abstract: The pooling problem is a nonconvex nonlinear programming problem (NLP) with applications in
the refining and petrochemical industries, but also the coal mining industry. The problem can be stated as
follows: given a set of raw material suppliers (inputs) and qualities of the supplies, find a cost-minimising way
of blending these raw materials in intermediate pools and outputs so as to satisfy requirements on the output
qualities. The blending in two stages (in pools and outputs) introduces bilinear constraints. The pooling
problem can alternatively be described as a minimum cost network flow problem with additional bilinear
constraints to capture the blending of raw materials.

In this paper we study a variation of the pooling problem that arises naturally in the coal mining industry and
is sometimes referred to as grade targeting. Coal is made-to-order according to customers’ desired product
qualities. Deviations from these target qualities result in contractually agreed bonuses and penalties. In the
pooling problem variation we study, costs are associated with these bonuses and penalties instead of network
flows. While in the original pooling problem we have hard bounds on the qualities and unmet demand is pe-
nalised in the objective function, in our coal mining variation we have hard demand constraints and deviations
from target qualities are penalised. This makes finding a feasible solution easy, while in the pooling problem
finding a nontrivial feasible solution that satisfies the quality requirements is already hard. An implication of
this is that we are able to solve larger problem instances than those typically studied in the pooling problem
literature.

To model the coal blending process accurately, we define a time-expanded network where the intermediate
pools represent coal stockpiles over time. Since coal is transported in large quantities, we study the trade-off
between continuous and discretized flows in coal blending, i.e., solving a continuous flow problem where ar-
bitrarily small flows are allowed versus solving a discretized flow problem where flows must be in multiples
of some basic unit, e.g. trainloads. We also study two exact mixed-integer linear programming (MILP) lin-
earizations of these mixed-integer nonlinear programs (MINLPs), which can be derived from unary and binary
expansions of the flow integrality constraint. Such discretizations are typically studied as approximations to
an originally continuous problem, however, in our application, a discretized formulation describes the original
problem more accurately than a continuous formulation.

The paper is organized as follows. In Section 1.1, we introduce the pooling problem and present a variant of
the well-known PQ-formulation. In Section 1.2, we extend the pooling problem to model a simplified coal
supply chain. After a short literature review on coal supply chains, we present four different problems: the
continuous flow problem (a MINLP), in which arbitrarily small flows are allowed, and three discretized flow
problems (a MINLP and two MILPs), in which flows must be in multiples of trainloads. The discretization
can be achieved by adding integrality constraints for the flow variables. We then show how to overcome the
nonlinearity which is inherent in the pooling problem with the use of unary and binary expansions of the
integer flow variables, which yields exact MILP reformulations of the discretized MINLP. We conclude the
paper with Section 2 where we provide computational results for the four different problems which we solve
for a real-life industry setting.

Keywords: Coal blending, pooling problem, mixed-integer nonlinear programming, mixed-integer linear pro-
gramming
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Table 1. Notation

(a) Pooling problem

Sets

V Set of vertices
I Set of inputs
L Set of pools
J Set of outputs
A Set of arcs

δ−(v) Set of incoming arcs of v ∈ L ∪ J
δ+(v) Set of outgoing arcs of v ∈ I ∪ L

K Set of qualities

Parameters

Λ Adjacency matrix of G = (V,A)
ca Per unit cost of flow on arc a ∈ A
λvk Quality value of input v ∈ I for quality k ∈ K

LV
v , UV

v Lower and upper bound on total flow through
v ∈ V

LA
a , UA

a Lower and upper bound on ya, a ∈ A
LK
vk , UK

vk Lower and upper bound on quality value of output
v ∈ J for quality k ∈ K

Variables

ya Flow on arc a ∈ A
qiv Fraction of total flow through v ∈ I ∪ L that

comes from input i ∈ I
qia Fraction of ya, a ∈ A, that comes from input

i ∈ I: qia = qiv , a = (v, w) ∈ A, i ∈ I
xia Flow in ya, a ∈ A, that comes from input i ∈ I

(b) Coal supply chain extension

Sets

S Set of run-of-mine stockpiles
T Set of time points at which supply comes in and

demand goes out

Parameters

M Flow multiple (trainload)
F−
st Incoming supply to stockpile s ∈ S at time t ∈ T

F+
t Outgoing demand at time t ∈ T

c−tk , c+tk Per unit negative cost (bonus) and per unit positive
cost (penalty) of d−tk and d+tk , respectively, for
t ∈ T , k ∈ K

λ−stk Quality value of flow F−
st , s ∈ S, t ∈ T , for

quality k ∈ K
`tk , utk Soft lower and upper bound on ptk , t ∈ T , k ∈ K
LS
s , US

s Lower and upper bound on size of stockpile s ∈ S

Variables

ptk Quality value of flow F+
t , t ∈ T , for quality

k ∈ K
d−tk , d+tk Deviation of ptk from `tk and utk , respectively, for

t ∈ T , k ∈ K
z−tk , z+tk Binary variable indicating that ptk is smaller than

`tk or larger than utk , respectively, for t ∈ T ,
k ∈ K

ζar Binary variable used to expand ya, a ∈ A (r
depends on the type of expansion, unary or binary)

ξiar Variable used to model the product qiaζar , a ∈ A,
i ∈ I (r depends on the type of expansion, unary or
binary)

1 PROBLEM FORMULATION

1.1 Pooling problem

We consider a directed graphG = (V,A) where V is the set of vertices andA is the set of arcs. V is partitioned
into three nonempty subsets I, L, J ⊂ V : I is the set of inputs, L is the set of pools and J is the set of outputs.
Flows are blended in pools and outputs. We assume thatA ⊆ (I×L)∪ (L×L)∪ (L×J)∪ (I×J), i.e., there
are no arcs between two inputs (A∩ (I×I) = ∅) or two outputs (A∩ (J×J) = ∅) and no backward arcs from
pools to inputs (A∩ (L×I) = ∅) or outputs to pools (A∩ (J×L) = ∅) or outputs to inputs (A∩ (J×I) = ∅).
Throughout this paper, we writeA = AIL∪ALL∪ALJ ∪AIJ whereAIL = A∩(I×L),ALL = A∩(L×L),
ALJ = A∩(L×J), andAIJ = A∩(I×J). We consider a set of qualitiesK whose quality values are tracked
across the network. We assume linear blending, i.e., the quality value of pools and outputs v ∈ L∪J for quality
k ∈ K is a linear combination of the incoming quality values weighted by the corresponding incoming flows
as fractions of the total incoming flow. Instances with ALL = ∅ are referred to as standard pooling problems
(SPPs), and instances with ALL 6= ∅ are referred to as generalized pooling problems (GPPs). Both SPPs and
GPPs can be modelled as bilinear programs, which are special cases of quadratically constrained quadratic
programs, which in turn are special cases of nonlinear programs. Instances with L = ∅ are referred to as
blending problems, which can be modelled as linear programs.

For every pool and output v ∈ L ∪ J , we denote the set of incoming arcs of v by δ−(v), and for every input
and pool v ∈ I ∪ L, we denote the set of outgoing arcs of v by δ+(v). Let ya be the flow on arc a ∈ A and
let ca be the corresponding per unit cost. The total flow through vertex v ∈ V (resp. the flow on arc a ∈ A)
is bounded below by LVv (resp. LAa ) and above by UVv (resp. UAa ). For every input i ∈ I and quality k ∈ K,
the quality value of the incoming raw material is given by λik. Similarly, for every output v ∈ J and quality
k ∈ K, the lower and upper bounds on the quality value of the outgoing blend are given by LKvk and UKvk,
respectively. Table 1 (a) summarises the notation for the pooling problem.

Significant differences in solution quality (when solved locally) and solve time (when solved locally or glob-
ally) can be seen when reformulating the pooling problem. Such reformulations typically use different (ag-
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gregating or disaggregating) variables and/or additional valid (but redundant) constraints. Recently, Alfaki
and Haugland (2013) proposed a multi-commodity flow formulation for the pooling problem based on input
commodities. Boland et al. (2015a) generalised these ideas and proposed new multi-commodity flow formula-
tions based on output, input and output and (input, output)-commodities. Their computational results suggest
that input and output commodities perform best, and since input commodities are more intuitive than output
commodities, we now present the multi-commodity flow formulation based on input commodities, commonly
referred to as the PQ-formulation.

The PQ-formulation uses fraction variables q, flow variables y and disaggregated flow variables x, which are
products of q and y. Let qiv denote the fraction of total flow through v ∈ I ∪ L that comes from input i ∈ I .
In particular, for v ∈ I we have qvv = 1 and qiv = 0 for i ∈ I \ {v}. Since we assume linear blending,
the fraction of ya, a = (v, w) ∈ A, that comes from input i ∈ I is equal to qiv . For convenience, we
introduce qia = qiv for all a = (v, w) ∈ A and i ∈ I . Introducing both arc- and node-based fraction variables
allows us to formulate both arc- and node-based constraints. Note, however, that the qia do not appear in an
implementation of the model, but are replaced by the corresponding qiv . Lastly, let xia denote the flow in ya,
a ∈ A, that comes from input i ∈ I . The PQ-formulation can be stated as follows:

[PQ] min
q,x,y

∑
a∈A

caya

s.t.
∑

a∈δ−(v)

ya =
∑

a∈δ+(v)

ya, v ∈ L, (1)

LVv ≤
∑

a∈δ+(v)

ya ≤ UVv , v ∈ I ∪ L, (2)

LVv ≤
∑

a∈δ−(v)

ya ≤ UVv , v ∈ J, (3)

LAa ≤ ya ≤ UAa , a ∈ A, (4)
qiv ≥ 0, v ∈ I ∪ L, i ∈ I, (5)∑

i∈I
qiv = 1, v ∈ I ∪ L, (6)∑

a∈δ−(v)

xia =
∑

a∈δ+(v)

xia, v ∈ L, i ∈ I, (7)

LKvk
∑

a∈δ−(v)

ya ≤
∑
i∈I

∑
a∈δ−(v)

λikxia ≤ UKvk
∑

a∈δ−(v)

ya, v ∈ J, k ∈ K, (8)

ya =
∑
i∈I

xia, a ∈ A, (9)

LVv qiv ≤
∑

a∈δ+(v)

xia ≤ UVv qiv, v ∈ L, i ∈ I, (10)

xia = qiaya, a ∈ A, i ∈ I. (11)

(1) is a flow conservation constraint which ensures that at every pool, the total incoming flow equals the total
outgoing flow. (2) and (3) are vertex capacity constraints and (4) is an arc capacity constraint. Constraints
(5) and (6) ensure that all fraction variables are between zero and one and that for every input and pool, the
fraction variables sum to one. (7) can be interpreted as a disaggregated flow conservation constraint: while
(1) ensures that at every pool, the total incoming flow must equal the total outgoing flow (regardless of the
origin of the flows), (7) ensures that at every pool, the total incoming flow originating from a particular input
must equal the total outgoing flow originating from the same input. It can be shown that (7) implies (1), i.e.,
that (1) is redundant. (8) is the output blending constraint. (9) and (10) are valid (but redundant) constraints.
Adding such redundant constraints significantly improves the computational performance of a formulation.
(11) outsources the qy terms – which would otherwise appear in (7)–(10) – into a single constraint. The
nonconvex nonlinearities of the pooling problem are only present in constraint (11). If we discretize e.g. the
flow variable y and expand it, then we can overcome the nonconvex nonlinearities by breaking the continuous
bilinear constraint into a finite number of linear constraints, one of which is active through an SOS1 constraint.
Note that by substituting (11) into (7)–(10), the PQ-formulation can also be stated without the x variables.

1.2 Coal supply chain extension

Coal supply chains have been studied extensively in recent years. Liu and Kozan (2011) model a coal train
scheduling problem as a Blocking Parallel-Machine Job-Shop Scheduling (BPMJSS) problem. Thomas et al.

1712



F. Rigterink et al., Discrete flow pooling problems in coal supply chains

Mines
Run-of-mine
stockpiles

Cargo assembly
stockpiles

Ships

Figure 1. Simplified coal supply chain
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Figure 2. Bonus/penalty function

(2013) address an integrated planning and scheduling problem motivated by the coal supply chains in Australia.
Both problems are NP-hard (Thomas et al. (2013)). Kozan and Liu (2012) propose a demand-responsive
decision support system integrating the operations of coal shipment, stockpiles and railing. While these papers
address short- to medium-term planning horizons, Singh et al. (2012) develop a large scale strategic capacity
planning model for a coal supply chain. The aforementioned all propose MILPs that do not consider blending.
Singh et al. (2014) develop an optimization tool for Rio Tinto’s iron ore operations that does consider blending,
addressing the nonlinearities using successive linear programming, a local optimization technique.

We consider the simplified coal supply chain shown in Figure 1. Coal is mined and loaded onto run-of-mine-
stockpiles. It is then transported by rail to a cargo assembly terminal where it is offloaded onto stockpiles
built for specific orders. The order-specific coal blends are then reclaimed and loaded onto ships. Contrary
to such a pull system, there is a trend towards push systems and dedicated stockpile terminals (see Boland
et al. (2015c)). However, in this paper, we only consider the former. We assume linear stockpile blending,
which is an approximation of the actual stockpile blending behaviour. Formulations that model the blending
behaviour more accurately (by predicting the geometry of a stockpile and taking into account the variability
of the incoming quality values) can be found in Robinson (2004).

Let S denote the set of run-of-mine stockpiles whose sizes are bounded below by LSs and above by USs for
stockpile s ∈ S, and let T denote the set of time points at which orders/ships arrive. The preceding time point
of t ∈ T is τ(t) := max{t′ ∈ T ∪ {−∞} : t′ < t}. For every ship arriving at t ∈ T (i.e., outgoing demand),
we aggregate the coal that is mined and loaded onto run-of-mine stockpiles (i.e., incoming supply) during
the time interval (τ(t), t]. That is, for every t ∈ T , we have incoming supply to stockpile s ∈ S, denoted
by F−st , and outgoing demand, denoted by F+

t . Between the run-of-mine stockpiles and the cargo assembly
terminal, coal is transported in multiples of trainloads of size M (e.g. 8 kilotonnes (kt)). We assume that
incoming supply F−st and outgoing demand F+

t are given in multiples ofM . The same applies to arc and vertex
capacities. Every order t ∈ T has soft and hard lower and upper bounds LKtk ≤ `tk ≤ utk ≤ UKtk on the coal
blend quality values, which are denoted by ptk. We assume that smaller quality values are preferred (consider
e.g. an unwanted coal quality such as sulfur content). If ptk ∈ [LKtk, `tk], then the mining company is paid a
per unit bonus (a negative cost) of c−tk < 0 for the deviation d−tk = `tk − ptk ≥ 0, i.e., we add MF+

t c
−
tkd
−
tk

to the objective function. If ptk ∈ [utk, U
K
tk ], then the mining company pays a per unit penalty (a positive

cost) of c+tk > 0 for the deviation d+tk = ptk − utk ≥ 0, i.e., we add MF+
t c

+
tkd

+
tk to the objective function.

If ptk ∈ (`tk, utk), then neither a bonus nor a penalty is paid. Quality values ptk ∈ (−∞, LKtk) ∪ (UKtk ,∞)
are infeasible. Table 1 (b) summarises the notation for the coal supply chain extension. The bonus/penalty
function is shown in Figure 2.

As described in Boland et al. (2015b), we construct a time-expanded pooling problem network where inputs
and pools are (run-of-mine stockpile, time point)-pairs (s, t). The intermediate pools represent run-of-mine
stockpiles over time. An output represents an order-specific cargo assembly stockpile. We model incom-
ing supply and outgoing demand by setting the arc and vertex capacities appropriately. Since we have flow
conservation constraint (1), we add a supersink output to account for the stockpile surplus.

As an example, consider the following problem, shown in part in Figure 3. Throughout this example, a
trainload isM = 8 kt and there is only one quality, ash, measured in dry basis percent (db). Since there is only
one quality, we omit the index k in all parameters and variables. We have two stockpiles (i.e., S = {1, 2})
with lower and upper bounds of 16 and 56 kt for stockpile #1 (i.e., LS1 = 2 and US1 = 7 in multiples of
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Trainload 8,000
Stockpile Minimum Maximum
#1 16,000 56,000
#2 16,000 64,000

2015-11-29
Supply 40,000 to #1
Supply 48,000 to #2
Demand 32,000 to ship #1

2015-12-04
Supply 16,000 to #1
Supply 24,000 to #2
Demand 32,000 to ship #2

(a) Given data
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(b) Corresponding pooling problem

Figure 3. Example of given data (a) and the corresponding pooling problem (b).

M ), and 16 and 64 kt for stockpile #2 (i.e., LS2 = 2 and US2 = 8 in multiples of M ). There are two time
points at which supply comes in and demand goes out. For the first time point, we have supply of 40 and
48 kt, and demand of 32 kt (i.e., F−11 = 5, F−21 = 6 and F+

1 = 4). The quality values of the incoming
supplies are λ−11 = 10 db and λ−21 = 11 db, and the bounds on the quality value of the outgoing demand are
[LK1 , `

K
1 , u

K
1 , U

K
1 ] = [7, 8.5, 9.5, 11] db. The costs of deviation are c−1 = −5 $/(db · tonne) and c+1 = 10

$/(db · tonne). For the second time point, we have F−12 = 2, F−22 = 3, F+
2 = 4, λ−12 = 8 db, λ−22 = 7 db,

[LK2 , `
K
2 , u

K
2 , U

K
2 ] = [7, 8.5, 9.5, 11] db, c−2 = −5 $/(db · tonne) and c+2 = 10 $/(db · tonne). Through

the enumeration of all flow combinations, one can easily check that the solutions y∗1 = ((3, 1), (0, 4)) and
y∗2 = ((3, 1), (1, 3)) are optimal (i.e., satisfying the first demand with flows of 3M from stockpile #1 and 1M
from #2, and satisfying the second demand with flows of 0M resp. 1M from stockpile #1 and 4M resp. 3M
from #2). The solutions have quality values of the outgoing demand of p1 = 10.25 db and p2 = 9.36 db resp.
p2 = 9.45 db, with an objective of MF+

1 c
+
1 d

+
1 = 8 kt · 4 · 10 $/(db · tonne) · (10.25 − 9.5) db = 240, 000 $.

These solutions are a recipe to the coal supply chain coordinator on how to optimally blend coal in order to
minimize costs.

Continuous flow problem: In the continuous problem, arbitrarily small flows are allowed, i.e., we assume y
to be continuous. Let z−tk and z+tk be binary variables used in constraints (12)–(16) to model the bonus/penalty
function shown in Figure 2. The problem can be stated as follows:

[C] min
d,p,q,x,y,z

∑
t∈T

∑
k∈K

MF+
t (c−tkd

−
tk + c+tkd

+
tk)

s.t. (1)–(11),
z−tk, z

+
tk ∈ {0, 1}, (12)

z−tk + z+tk ≤ 1, (13)

ptk =
1

F+
t

∑
i∈I

∑
a∈δ−(vJt )

λikxia, (14)

(`tk − ptk)+ ≤ d−tk ≤ min{z−tk(`tk − LKtk), (`tk − ptk) + (1− z−tk)(UKtk − `tk)}, (15)
(ptk − utk)+ ≤ d+tk ≤ min{z+tk(UKtk − utk), (ptk − utk) + (1− z+tk)(utk − LKtk)}, (16)

t ∈ T, k ∈ K.

Discretized flow problems: In the discretized problem, flows must be in multiples of trainloads. This can
be modelled by adding an integrality constraint for y:

[D] min
d,p,q,x,y,z

∑
t∈T

∑
k∈K

MF+
t (c−tkd

−
tk + c+tkd

+
tk)

s.t. (1)–(16),

ya ∈ Z, a ∈ A. (17)

Modelling the unary and binary expansions of the integrality constraint (17), we can derive two exact lineariza-
tions of the nonlinear constraint (11), as described in Gupte et al. (2013). Let ζar be the binary variables used
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in the expansion of ya. We have r ∈ {0, . . . , ya − ya} for the unary and r ∈ {0, . . . , blog2(ya − ya)c} for
the binary expansion of ya. Finally, let ξiar be the continuous variable used to model the product qiaζar for
each r. The unary and binary expansions of [D], denoted by [D-U] and [D-B] respectively, both optimize over
the variables d, p, q, x, y, z, ξ, ζ, with the same objective function as in [D], and using constraints (1)-(10) and
(12)-(16). The remaining constraints for each formulation are as follows.

[D-U] xia =
∑
r∈Ma

(y
a
+ r)ξiar, qia =

∑
r∈Ma

ξiar, a ∈ A, i ∈ I : Ma 6= ∅, (18)

ya = y
a
+

∑
r∈Ma

rζar,
∑
r∈Ma

ζar = 1, a ∈ A : Ma 6= ∅, (19)

q
ia
ζar ≤ ξiar ≤ qiaζar, a ∈ A, i ∈ I, r ∈Ma, (20)

[D-B] xia = qiaya +
∑
r∈Na

2rξiar, a ∈ A, i ∈ I : Na 6= ∅, (21)

ya = y
a
+

∑
r∈Na

2rζar ≤ ya, a ∈ A : Na 6= ∅, (22)

ξiar ≥ max{q
ia
ζar, qia + qia(ζar − 1)}, a ∈ A, i ∈ I, r ∈ Na, (23)

ξiar ≤ min{qiaζar, qia + q
ia
(ζar − 1)}, a ∈ A, i ∈ I, r ∈ Na, (24)

where q
ia

, qia, y
a

and ya are the lower and upper bounds on qia and ya, respectively. For all a ∈ A, we set
Ma = {0, . . . , ya − ya} resp. Na = {0, . . . , blog2(ya − ya)c} if ya − ya ≥ 1, and Ma = ∅ resp. Na = ∅
if ya = y

a
. A trivial choice of the lower and upper bounds is [q

ia
, qia] = [0, 1] and [y

a
, ya] = [LAa , U

A
a ].

However, these may be tightened in a preprocessing step, the importance of which is evident in the unary and
binary expansions [D-U] and [D-B]: the tightness of bounds determines the number of binary variables ζar
that need to be introduced. Note that [C] and [D] are MINLPs, while [D-U] and [D-B] are MILPs.

2 COMPUTATIONAL RESULTS AND CONCLUSION

Our industry partner provided us with a data set representing supply and demand data (including quality
specifications and contractual bonuses and penalties) of a real life mining company for the time horizon of
two years. We split the data into problem instances of years, half-years and quarters. There are two run-of-
mine stockpiles (i.e., |S| = 2) with lower and upper bounds of LS1 = LS2 = 2M , US1 = 7M , US2 = 8M ,
and there are four qualities: ash, moisture, sulfur and volatile matter (i.e., |K| = 4). Problem sizes for
the 14 instances vary between |T | ∈ {10, . . . , 22} for quarterly, |T | ∈ {24, . . . , 42} for half-yearly and
|T | ∈ {54, 80} for yearly instances. We used AMPL to model the different formulations and solved every
instance for every formulation. The MINLPs [C] and [D] were solved with SCIP 3.0.01 which we linked to
CPLEX 12.6.0.02 as the LP solver and to Ipopt 3.103 as the NLP solver. We solved the MILPs [D-U] and
[D-B] with CPLEX 12.6.0.0. Yearly instances had a time limit of 60 minutes, half-yearly instances had 30
minutes, and quarterly instances had 15 minutes. All computations were carried out on a Dell PowerEdge
R710 with dual hex core 3.06GHz Intel Xeon X5675 processors and 96GB RAM, running Red Hat Enterprise
Linux 6 and using a single thread. Let z[f, i,M ] denote the optimal objective function value of problem
[f ], f ∈ {C, D, D-U, D-B}, for instance i and flow multiple M . It is clear that z[C, i,M ] ≤ z[D, i,M ] =
z[D-U, i,M ] = z[D-B, i,M ] for all i and M . Comparing the best known lower bounds for the continuous and
upper bounds for the discrete flow problems, we calculated the relative gap between the two as

gap(i,M) =
min{z[D, i,M ], z[D-U, i,M ], z[D-B, i,M ]} − z[C, i,M ]

z[C, i,M ]
,

where z[f, i,M ] is the best upper and z[f, i,M ] is the best lower bound on z[f, i,M ] that is found within the
instance-specific time limit. If z[D, i,M ] = z[D-U, i,M ] = z[D-B, i,M ] = ∞ (i.e., no upper bound was
found for the discrete flow problem) or z[C, i,M ] = −∞ (i.e., no lower bound was found for the continu-
ous flow problem), then gap(i,M) is not defined. Considering only the (i,M)-pairs for which gap(i,M) is
defined, the gaps for yearly instances are in [1.60%, 9.94%], for half-yearly ones in [0.13%, 4.57%] and for
quarterly ones in [0.04%, 4.25%]. Computational results for M ∈ {8, 4, 2} kt are shown in Table 2. We also
solved instances for half and quarter trainloads to see if [D-B] performs better than [D-U] if the y variables

1SCIP (scip.zib.de) is a non-commercial, global solver for MILP and MINLP, and our solver for [C] and [D].
2CPLEX (cplex.com) is a commercial, global solver for MILP and quadratic programming (QP), and our solver for [D-U] and [D-B].
3Ipopt (coin-or.org/Ipopt) is an open source, local solver for NLP. The solver implements an interior point line search filter method to find
local solutions. We use Ipopt in SCIP to find local solutions fast.
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Table 2. Computational results for M ∈ {8, 4, 2} kt. If an instance could be solved within its time limit, we
report the total solve time in seconds, otherwise we report the relative gap between the upper and lower bound
in percent in brackets.

M = 8 kt M = 4 kt M = 2 kt

Instance [C] [D] [D-U] [D-B] [C] [D] [D-U] [D-B] [C] [D] [D-U] [D-B]

Year 1 (∞) (8.44) (1.74) (3.82) (∞) (9.61) (0.00) (6.21) (2.40) (4.85) (∞) (∞)
Half-year 1 (1.92) (0.60) 1072.02 973.89 (3.35) (4.33) (0.76) (2.17) (1.44) (2.28) (1.27) (1.44)

Quarter 1 (0.15) 7.70 3.91 4.64 (0.63) 77.22 27.72 29.70 (0.47) 365.04 189.79 376.52
Quarter 2 (0.12) 22.81 14.44 12.60 (0.42) 579.48 361.19 679.32 (0.34) (0.26) (0.06) (0.03)

Half-year 2 (∞) 415.43 52.51 231.83 (1.17) (1.04) (0.97) (1.48) (∞) (1.77) (1.92) (2.36)
Quarter 3 (0.01) 2.19 4.38 3.93 (0.05) 10.49 17.10 10.25 (∞) 119.29 272.60 47.00
Quarter 4 688.62 6.04 1.82 3.88 (0.22) 101.37 31.73 52.99 (∞) 357.00 152.21 350.21

Year 2 (∞) (∞) 1752.94 3556.30 (1.14) (∞) (0.62) (1.37) (∞) (1.81) (0.74) (1.54)
Half-year 1 (0.66) 72.54 16.30 29.13 (0.89) 1243.82 174.17 727.81 (0.59) (0.91) 1766.16 (0.32)
Quarter 1 (0.04) 2.87 2.85 3.54 (0.14) 2.92 10.22 14.16 (0.24) (0.00) 43.31 189.39
Quarter 2 61.61 0.33 0.49 0.71 (0.02) 2.18 2.06 2.33 71.24 1.17 5.90 7.87

Half-year 2 (0.11) 7.59 6.05 6.20 (0.21) 69.25 27.18 98.54 (0.13) 606.69 1752.79 679.21
Quarter 3 10.36 0.32 0.54 0.69 407.20 0.49 1.28 0.71 137.01 0.55 1.81 1.57
Quarter 4 (0.01) 3.00 1.44 1.50 (0.04) 6.07 5.16 8.14 (∞) 15.28 24.53 89.99

can take more discrete values. We see that the discretized problems [D], [D-U] and [D-B] perform much better
than the continuous problem [C]. In 27 out of 42 runs, [D-U] outperforms [D] and [D-B]. There are only 9
runs in which [D] performs best, and only 5 runs in which [D-B] performs best – despite the fact that the
formulation has far fewer binary variables than [D-U]. [C] only wins once, and that is due to [D-U] and [D-B]
not finding any upper bounds. We can conclude that it is highly advantageous to discretize flow variables (if
the application allows it), and that the exact MILP linearizations perform significantly better than the MINLPs.
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