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Abstract: The exchange of important greenhouse gases between the ocean and atmosphere is influenced 
by the dynamics of near-surface plankton ecosystems. Marine plankton ecosystems are modified by climate 
change creating a feedback mechanism that could have significant implications for predicting future climates, 
for example, the collapse or extinction of a plankton population may push the climate system across a tipping 
point. Dynamic green ocean models (DGOMs) are currently being developed for inclusion in climate models 
to predict the future state of the climate. These models are often complicated, commonly with 5-10 
competing phytoplankton and several omnivorous zooplankton (Le Quéré et al., 2005). Complicated 
dynamics including chaos are readily found even in unforced forms of the relatively simple nonlinear 
plankton ecosystem ordinary differential equation models that underpin DGOMs (Cropp et al., 2014). The 
appropriate complexity of the DGOMs is an ongoing issue, with models tending to become more complex, 
and perhaps an increasing propensity for chaos (Fussmann and Heber, 2002). 

The complexity of DGOMs means that most attempts to confer them with “desirable” properties proceed by 
numerical experimentation and/or model inter-comparison projects such as the MARine Ecosystem Model 
Inter-comparison Project (MAREMIP, Sailley et al., 2013). Some recent investigations into DGOMs have 
considered the role of zooplankton predation functional forms in determining model properties (for example, 
Anderson et al., 2010; Visser and Fiksen, 2013; Vallina et al., 2014). The functional forms considered in 
these experiments are generally based on the classic Holling Type II or III forms (Holling, 1959) with 
modifications to represent zooplankton strategies such as the specialised or generalised feeding strategies 
described by Koen-Alonso (2007) and prey switching (Gentleman et al., 2003). However, little consensus has 
been reached on the most useful form of grazing function for plankton systems that underpin both green 
ocean models and fisheries ecologies (Le Quéré et al., 2005). 

We consider a relatively simple (three-population) DGOM of two phytoplankton and a zooplankton where 
the interacting plankton populations compete for a single limiting nutrient. We find chaotic dynamics are 
possible in this low trophic order ecological model with a specialist foraging strategy as we vary the 
zooplankton mortality. This suggests that chaotic dynamics might be ubiquitous in the more complex models, 
but this is rarely observed in DGOM simulations. The physical equations of DGOMs are well understood and 
are constrained by conservation principles, but the ecological equations are not as well understood, and are 
often constructed without explicit consideration of conserved quantities as closed model domains are 
considered unrealistic by some ecologists (Loreau, 2010, p 16). The work we present here utilizes a 
theoretical framework constructed on the fundamental principles of conservation of mass, finite resources 
and explicit resource limitations to growth. Our results, when considered in the context of the paucity of the 
empirical and theoretical bases upon which DGOMs are constructed, raises the interesting question of 
whether DGOMs would represent reality better if they include or exclude chaotic dynamics. 

Our analysis of this simple, but representative, plankton system suggests that apparently innocuous choices 
of grazing terms, varying from indiscriminate to discriminate types which do not appear significantly 
different, and which may be equivalent up to observational/experimental accuracy, can predetermine the 
emergent properties of the systems. We observe that the indiscriminate grazer appears to have more reliable 
and steadier shares of the ecosystem biomass in contrast to the discriminate grazer’s very strongly fluctuating 
biomass share. Indiscriminate grazing functions for zooplankton are commonly used in the current generation 
of GCMs, where the emphasis is to maintain biodiversity and to represent the dynamics of large groups of 
plankton functional types (PFTs). However, future generations of GCMs may wish to resolve more detailed 
dynamics, such as bloom succession, and we suggest that for these models introducing discriminate grazing 
functions for the marginal populations may be more appropriate. 
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1. INTRODUCTION 

The choice of the functional form to represent interactions between populations in ecosystems is an ongoing 
point of contention among ecologists. The theoretical bases for many of the simple two-population 
interaction terms were set out early [i.e. (Lotka, 1925; Volterra, 1926; Holling, 1959; Ivlev, 1961)] but there 
remains little theoretical or empirical evidence to justify a choice of one form over another. A number of 
studies have suggested that even simple functional forms may have important influences on properties of the 
systems. For example, Steele and Henderson (1992) observed that the functional form of zooplankton 
mortality, often a closure term in plankton models, affected the dynamical stability of simple models, with 
linear mortality apparently destabilising the system. However, it often turns out that things are more 
complicated than they first appear, and it now seems that there is no simple relationship between stability and 
the form of the closure term (Edwards and Brindley, 1996, 1999; Edwards and Yool, 2000).  

The Conservative Normal (CN) framework underpins the theoretical basis for our modeling approach (Cropp 
and Norbury, 2012a, b, 2013; Cropp et al., 2014; Cropp and Norbury, 2015). It identifies clearly models that 
are ecologically unrealistic and allows some emergent properties to be predetermined. For example, Cropp 
and Norbury (2012b) showed that for a general class of models it was possible to ensure coexistence in a 
model of any complexity by choosing functional forms for loss terms that vanished as the population 
vanished. The simple form of the boundary eigenvalues in CN systems, which are all known analytically, 
may be used to provide pre-determined properties such as community structure. The choices made for the 
functional forms of population interactions can be important pre-determinants of system properties. Here, we 
identify a priori some zooplankton properties that have not been considered in previous analyses of grazing 
in DGOMs, and have strongly related, but very different, dynamical behaviours. 

The CN framework allows us to differentiate between normal and obligate grazing, where we define normal 
grazing to mean that the zooplankton population can survive on any one of its prey independently. We define 
obligate grazing to mean that the zooplankton population is dependent on a specific prey being present in 
order for it to survive - although it also consumes and grows on its other prey, it cannot survive if its obligate 
prey is absent. We also consider whether the zooplankton functions as an indiscriminate or discriminate 
grazer, analogous to the generalists and specialists defined by Koen-Alonso (2007). Rather than consider 
these processes in the complicated domain of a “realistic” fully coupled global biophysical model, we take 
the simpler “caricature model” approach advocated by many investigators that is more amenable to analysis 
and hence can often provide unequivocal, though constrained, answers. In this paper we fix on a linear 
mortality term for zooplankton and examine the dramatic differences in system dynamics that appear after 
quite mild variations in the zooplankton foraging strategy.  

2. ZOOPLANKTON FORAGING STRATEGIES 

Zooplankton are known to move up and down actively through the water column to optimise their feeding 
strategy, with recent observations revealing that Antarctic krill even dive to abyssal depths to feed (Clarke 
and Tyler, 2008). This suggests that more sophisticated feeding functions than the standard indiscriminate 
multi-prey feeding functions (Gentleman et al., 2003) should be used to model zooplankton grazing. 
Indiscriminate grazing functions assume that foraging zooplankton will ingest any prey that they encounter 
during a generic foraging expedition. We also consider two feeding relations: obligate grazers that cannot 
survive if their obligate prey is absent; and facultative (or normal) grazers that can survive on either of their 
prey independently. 

2.1. Discriminate/indiscriminate Grazing 

We differentiate discriminate grazers as zooplankton that actively divide the time they spend foraging for 
prey between two states, for example, shallow and deep so that they optimise their feeding rates on each 
prey. We make two assumptions regarding discriminate grazing: that discriminate grazing could not persist in 
a population unless it provides some advantage to the grazer, and that a discriminate grazer would adjust the 
proportions of time devoted to searching for each prey according to prey abundance. We then expect a 
discriminate grazer to have a better capture rate for a given prey and that in the absence of alternative prey, 
indiscriminate and discriminate grazing strategies are equivalent. We consider a grazer Z  feeding on two 
prey populations ( P1  and P2 ) and use the discriminate (sometimes referred to as specialist) feeding function 

(where φi  represents the fraction of foraging time allocated to each prey): 

 GD = φ1

ϕ̂1P1

1+ ε̂1P1

+ φ2

ϕ̂2P2

1+ ε̂2P2

 , (1) 
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and the indiscriminate (or generalist) feeding function: 

 GI = ϕ1P1

1+ ε1P1 + ε2P2

+ ϕ2P2

1+ ε1P1 + ε2P2

 , (2) 

where the parameters are defined in section 2.3. To facilitate an equitable comparison between grazing 
functions, free of the influence of artefacts from different parameter values, we require that discriminate and 
indiscriminate grazers perform equally well when only one prey exists that is: 

 
ϕiPi

1+ ε iPi

= GI , i = GD, i = φi
ϕ̂ iPi

1+ ε̂ iPi

, i = 1,2  . (3) 

This assumption dictates that ϕi = φiϕ̂ i , implicitly meaning that the discriminate grazer optimises its foraging 

strategy according to the relative abundance of the prey populations. To enable comparison of the grazing 
functional forms on equal terms we reduce the number of confounding factors and set ε i = ε̂ i . This 

assumption makes a direct ecological interpretation of our results less intuitive, but we take the view that the 
effect of the functional forms is more important than the effect of these parameter values, and the relatively 
straight-forward examination of the influence of parameter values within a particular grazing strategy is 
easily undertaken by those with particular interest in this aspect. 

We combine the two grazing forms (1) and (2) as in equation (4) to enable us to use a simple computational 
switch to transition between discriminate and indiscriminate grazing types using a single parameter ( ρ ). This 

allows us to change the functional form of grazing within the same computer model and minimises the risk of 
coding errors influencing our conclusions. To simplify our computational study, we assume that the prey 
have identical properties but that the zooplankton preferentially consumes P1  (i.e. ϕ1 > ϕ2 ). 

2.2. Normal/obligate Grazing 

We use the CN framework as the theoretical basis for the construction of our model and the determination of 
the feeding attributes of the zooplankton (Cropp and Norbury, 2015). To define obligate versus normal 

omnivory, we consider parameter ranges where Z can always survive on P1  alone ( 0 < σ Z < σ Z
+ , where σ Z  is 

the zooplankton mortality rate and σ Z
+  is defined in equation (6)), can survive on P1  and/or P2  alone (

0 < σ Z < σ Z
− , where σ Z

−  is defined in equation (5)) but can’t survive on P2  alone when σ Z
− < σ Z < σ Z

+ . Here 

σ Z
−  gives the transition from normal grazing to obligate grazing on P1  as the grazer mortality rate σ Z  

increases past σ Z
−  (remember Z always prefers, or grows better on, P1 ). 

The CN maximum resource per capita grazing sign condition for Z provides the parameter constraint:  

 . (4) 

We define Z to be a normal grazer, or alternatively a “facultative grazer”, if it can survive on either P1  or P2  

independently, that is, we evaluate (4) at the extremities P1 = 1 and P2 = 1 and obtain the constraint: 

 . (5) 

This complies with the CN definition of a “normal” ecology. We also consider the case of an obligate CN 
ecology, where Z has the obligate property for the parameter range: 

 . (6) 

In this case we define Z to be an “obligate grazer”, obligate in the sense that it must have P1  present in order 

to survive (remember that we order the prey so that the first term in (6) is the larger). Using the growth and 
grazing parameter values (13), Z is a normal (facultative) grazer if: 

  , (7) 

ϕ1 1−ψ 1( )P1

1+ ε1P1 + ρε2P2

+
ϕ2 1−ψ 2( )P2

1+ ρε1P1 + ε2P2

−σ Z > 0 for P1 + P2 = 1

0 < σ Z < min
ϕ1 1−ψ 1( )

1+ ε1

,
ϕ2 1−ψ 2( )

1+ ε2









≡
ϕ2 1−ψ 2( )

1+ ε2

≡ σ Z
−

σ Z
− < σ Z < max

ϕ1 1−ψ 1( )
1+ ε1

,
ϕ2 1−ψ 2( )

1+ ε2









≡
ϕ1 1−ψ 1( )

1+ ε1

≡ σ Z
+

0 < σ Z < σ Z
− = 0.1708
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and is an obligate grazer (it cannot survive in the absence of P1 ) if: 

  . (8) 

If 

 

 then Z is not a viable population as it cannot grow, or therefore survive, under any 

ecologically realistic circumstance. Note that the definition of Z as a normal or obligate grazer is independent 
of its foraging strategy, so we must examine all four combinations of indiscriminate and discriminate feeding 
with normal and obligate omnivory. 

We note that grazing formulations of the form (1) are sometimes criticised in consumer-resource models that 
do not have mass conservation because they allow unbounded grazing – as the number of prey populations 
increases, the total grazing also increases without bound. However, when they are implemented in models 
where mass is conserved (as is fundamental to the CN framework) grazing is always bounded. The advantage 
of discriminate grazing in this case indicates advantages gained by the grazer as a result of using a more 
sophisticated foraging strategy.  

2.3. The NPPZ Model 

Our approach considers a minimal  model of a single limiting nutrient (N), two phytoplankton 

populations (  and ) and a single zooplankton population (Z) that grazes on both  and  (equations (9)

-(12)). The zooplankton grazing function includes a parameter ( ) that allows the functional form to 

transition smoothly from indiscriminate grazing ( ) to discriminate grazing ( ).  

  (9) 

  (10) 

 , (11) 

 

.(12) 

We produce the numerical investigations by integrating equations (9)-(12) with the arbitrary, but realistic, 
parameter set based on values measured in the field (see (Cropp and Norbury, 2009) for details): 

 
μ1 = 1.00, κ1 = 0.25, ϕ1 = 6.18, ψ 1 = 0.40, ε1 = 5.50, σ1 = 0.00, σ Z = 0.19.

μ2 = 1.15, κ 2 = 0.14, ϕ2 = 1.85, ψ 2 = 0.40, ε2 = 5.50, σ 2 = 0.26,
 (13) 

Here, the μi  are maximum phytoplankton growth rates, the κ i  are nutrient half-saturation constants, the ϕ i  

are zooplankton grazing rates, the ψ i  are zooplankton assimilation efficiencies, the ε i  are related to the 

handing times of the prey and the σ i  represent natural mortality and mortality due to higher predation. 

RESULTS 

We consider the properties of the system for continuous variation of σ Z  for indiscriminate foraging ( ρ = 1, 

Fig. 1) and discriminate foraging ( ρ = 0, Fig. 2). The dynamics of the system with indiscriminate foraging 

are relatively simple: the system has a unstable equilibrium state comprised of P2 ,Z, N{ }  for low values of 

σ Z  surrounding which is a stable limit cycle involving periodic blooms of P2 , Z and N for 0 < σ Z < 0.11 

after which a stable P2 , Z and N steady state exists (Fig 1b-d). This stable coexistence is maintained, with P2  

rapidly increasing and Z rapidly reducing in response to further increases in σ Z  until the P1  population 

invades when σ Z ≈ 0.17  (Fig 1a) As σ Z  increases further, the equilibrium population of P1  increases 

linearly, P2  reduces commensurately, and the equilibrium Z population is constant, as is the inorganic 

σ Z
− = 0.1708 < σ Z < 0.5705 = σ Z

+

σ Z > 0.5705

NP
1
P

2
Z

P
1

P
2

P
1

P
2

ρ
ρ = 1 ρ = 0

P1 = P1 fP1
= P1

μ1N
N +κ1

− ϕ1Z
1+ ε1P1 + ρε2P2

− σ 1









,

P2 = P2 fP2
= P2

μ2N
N +κ 2

− ϕ2Z
1+ ρε1P1 + ε2P2

− σ 2









,

Z = Z fZ = Z
ϕ1 1−ψ 1( )P1

1+ ε1P1 + ρε2P2

+
ϕ2 1−ψ 2( )P2

1+ ρε1P1 + ε2P2

− σ Z











N = Z σ Z + ϕ1ψ 1P1

1+ ε1P1 + ρε2P2

+ ϕ2ψ 2P2

1+ ρε1P1 + ε2P2









 − P1

μ1N
N +κ1

− σ 1









 − P2

μ2N
N +κ 2

− σ 2
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nutrient N (Fig 1c,d). This continues until P2  becomes zero (at σ Z ≈ 0.55 ) after which P1  and Z briefly 

stably coexist until Z goes extinct at σ Z = σ Z
+ = 0.5705.  

 

Figure 1. Bifurcation transition diagrams for the indiscriminate forager ( ρ = 1) for P1  (a), P2  (b), Z 

(c), and N (d) for values of the parameter 0 < σ Z < 0.6 . Local maximums are shown as blue dots and 

local minimums as red dots. 

 

Figure 2. Bifurcation transition diagrams for the discriminate forager ( ρ = 0) for P1  (a), P2  (b), Z (c), 

and N (d) for values of the parameter 0 < σ Z < 0.6 . Legend as Fig. 1. 

The difference in the dynamics of the indiscriminate and discriminate systems in the region 0.16 < σ Z < 0.55  

is quite dramatic (cf Figs 1 and 2). The stable dynamics of the indiscriminate system, where  and  

exchange mass in reducing sequential blooms while Z remains constant as the system approaches its 
equilibrium state are replaced by varying amplitude sequential blooms of  then  then Z continue 

P
1

P
2

P
1

P
2
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unabated. We found an extensive region of chaotic dynamics in the region 0.16 < σ Z < 0.55  for the 

discriminate grazer (Fig 2) that was not evident for the indiscriminant grazer (Fig 1). 

 

Figure 3. System dynamics for the indiscriminate forager ( ρ = 1, left) and for the discriminate forager 

( ρ = 0, right) for σ Z = 0.30 . Trajectories are coloured according to the non-dimensional velocity: blue 

= slow  red = fast. Blue arrows show the vector field on the boundaries of the ecospace. Relevant 

critical points are shown as filled (stable) or unfilled (unstable). C1 is the P1
*,0,0{ }  point, C2 is the 

0,P2
*,0{ }  point, C5 is the P1

*,Z *,0{ }  point, and C7 is the P1
*,P2

*,Z *{ }  point. 

The dynamics of the system in the chaotic region are very different with the dynamics of the indiscriminate 
grazer system rapidly contracting to a small region of the ecospace and then slowly approaching the 
equilibrium state, with most of the mass partitioned between P1  and P2  with small fractions in Z and N (Fig 

3, left panel). In contrast, the discriminate grazer system has states where P1  dominates for an extended 

period (blue region in lower left corner of the right panel of Fig 3), states where P2  dominates for an 

extended period (blue region in lower right corner of the right panel of Fig 3), and states where Z briefly 
dominates in short-lived blooms (red trajectories in the right panel of Fig 3). These are fundamental 
differences that will lead the two models to produce very different predictions. 

3. DISCUSSION AND CONCLUSIONS 

Our results suggest that dynamic green ocean models (DGOMs), that are designed to simulate the carbon 
uptake in, and export from, the well-mixed upper ocean layers, should have carefully considered choices of 
grazing function. Indiscriminate grazing typically gives a model that can be readily, and stably, tuned to 
historical data. However, global warming can increase the closure terms, and thus increase the zooplankton 
mortality coefficient and move the system well into the obligate region. The changed outcomes in terms of 
which phytoplankton population dominates the ecology should be evaluated considering the use of the 
model: 

• The primary producer least preferred by the grazer dominates the system initially; 
• The balance between primary producer shifts as grazer mortality increases until the primary producer 

that leaves least nutrient for its competitor dominates the system; 
• The transition between primary producer states is dependent on the grazing formulation – a simple 

transfer of biomass at steady state for indiscriminant grazing, but a chaotic transition for discriminant 
grazing. 

This simple model suggests which parameter variations lead to desired modelling outcomes for ecosystem 
behaviour and raises the question of whether the plankton functional type responsible for controlling the 
carbon cycle in a model should be given properties more like P1  or P2 . This study tries to clarify the 

influence of, and simplify those decisions about, the functional forms and the associated parameters to ensure 
stable, robust, desirable outcomes of the modelling process. The crucial choice of grazing strategies 
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(indiscriminate/generalist versus discriminate/specialist) depends on whether the application outcome 
requires stable equilibrium populations or plankton successions. 
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