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Abstract: The occurrence of rainfall over Australia is closely related with several key climate predictors, which 
are El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM). 
Some researchers tried to explore the effects of these climate predictors in rainfall variability of different parts 
of Australia, particularly Western Australia, Queensland and Victoria. Nonetheless, clear association between 
separate or combined large-scale climate predictors and South Australian spring rainfall is yet to be established. 
Past studies showed that maximum rainfall predictability was only 20% with isolated/individual effects of 
ENSO and SAM predictors in this region. The present study further explored these hypotheses. For achieving 
better predictability of spring rainfall, this paper examined additional two important aspects; relationship 
between lagged individual climate predictors with spring rainfall as well as linked (multiple combinations of 
ENSO and SAM predictors) influence of these significant lagged climate indicators on spring rainfall prediction. 
Multiple regression (MR) modeling was used in this study. Two stations; Tarcoola and Mount Eba were chosen 
as case study of this region. 

MR models with combine-lagged climate predictors (SOI-SAM based models) showed better generalization 
ability for both the model calibration (1957-2009) and model validation (2010-2013) periods for all the stations. 
Results also demonstrated that rainfall predictability significantly increased using combined climate predictors 
compared to predictability with individual effects of each predictor. The attained combined climate model 
predictabilities were 44% for Tarcoola and 40% for Mount Eba during calibration period. The predictabilities 
were significantly enhanced during model validation; the results are 94% for Tarcoola and 83% for Mount Eba. 
Whereas, the maximum rainfall predictabilities were limited to 33% and 30% respectively considering the 
effects of single climate predictors. Therefore, statistical analyses outlined the capabilities of SOI-SAM based 
combined climate predictors compared to their single/individual influences for predicting South Australian 
spring rainfall. 
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1. INTRODUCTION 

Rainfall is an outcome of a continuous chain of phenomena involving different ocean currents, air temperature 
and atmospheric pressure. The ability to forecast rainfall several months or seasons in advance has been a goal 
of water resource managers for many decades. A reliable forecast of rainfall several months or seasons ahead 
can be beneficial for the management of land and water resources systems (Anwar et al., 2008), particularly in 
Australia where the hydroclimatic variability is very high (Peel et al., 2001). Many researchers have tried to 
establish the relationships between large-scale climate predictors with rainfall in different parts around the world 
(Niu 2012; Grimm 2011).  
 
The variability of Australian rainfall has been linked to several dominant large-scale climate indices based on 
sea surface temperature (SST) and pressure differences anomalies originate from the Pacific, Indian and 
Southern Oceans. The climate predictors comprising the key climate indices; ENSO, IOD and SAM were used 
by many researchers in various past studies. Kirono et al. (2010); Risbey et al. (2009); Meneghini et al. (2007); 
Cai et al. (2001) investigated rainfall variability with selected predictors variable covering whole of Australia, 
while others are more focused on particular region such as South West Western Australia (Ummenhofer et al., 
2008 and England et al., 2006), South Australia (Nicholls, 2010 and Evans, 2009) and East Australia (Verdon et 
al., 2004). South Australia is one of the regions where clear association between separate or combined large-
scale climate predictors and South Australian spring rainfall is yet to be established. Risbey et al. (2009) showed 
that maximum rainfall predictability was only 20% with isolated/individual effects of ENSO and SAM 
predictors in this region.  
 
The more recent conducted researches especially on South Australian rainfall predictions including Chowdhury 
and Beecham (2013) and Cai et al. (2011), that analyzed the influence of simultaneous and separate role of 
single climate predictors at a time. Schepen et al. (2012) discovered that a strong relationship between 
simultaneous/concurrent climate predictors and rainfall does not essentially proved that there is also exists a 
lagged relationship, which is very important for rainfall predictions. In many cases the relationships of climate 
predictors and rainfall are more complex where only single predictor alone are unable to predict rainfall 
accurately. This combined relationship considering lagged-time effects of multiple climate predictors has not 
previously been attempted in South Australia. Keim and Verdon-Kidd (2009) claimed that south Australian 
rainfall variability is not determined by a single climate predictor itself, it is clear that complete rainfall 
variability could not explain by a single climate driver on this region.  
 
Due to the geographical locations of South Australia, it is obvious that the SAM may also have much influence 
on rainfall variability in this region. Also, previous research has not considered lagged-time effects as well as 
multiple combinations (ENSO-SAM sets) of these key climate indicators at a time for assessing rainfall 
predictability. These two important reasons might be the main facts for showing very low predictability of South 
Australian rainfall. Thus, the objective of this study is to investigate the relationship of separate and combined 
lagged-time effects of ENSO and SAM predictors on South Australian spring rainfall, as a case study. Therefore, 
this study would be the extended and revised works conducted by Chowdhury and Beecham (2013), Cai et al. 
(2011) and Risbey et al. (2009). Moreover, it also distinguished from previous studies by predicting spring 
rainfall four consecutive years in advance using maximum possible lagged-time relationship of separate and 
combined climate indices. The outputs of the model were intended to be deterministic forecast means that can 
explore with quantitative measures which opposed to probabilistic forecast which can give results only above or 
below median value. 

2. DATA AND STUDY AREA 

The historical monthly rainfall data in millimeters from January 1957 to December 2013 were obtained from the 
Australian Bureau of Meteorology website (www.bom.gov.au/climate/data/). The climate predictor’s data were 
obtained from Climate Explorer website (http://climexp.knmi.nl/). Two rainfall stations in South Australia; 
Tarcoola (TC) and Mount Eba (ME) were chosen as case study shown in the fig. 1.  
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Figure 1. Map of the study area with selected locations (Source: www.bom.gov.au). 

3. METHOD  

To accomplish the aim of the study multiple regression (MR) modelling is used. MR analysis is a linear 
statistical modeling technique that allows finding out the best relationship between a variable (dependent, 
predicant) and several other variables (independent, predictor) through the least square method. The MR model 
can be expressed by a general equation 1 as following (Montgomery et al. 2001): Y = b଴ + bଵXଵ + bଶXଶ + c																																																																																																																																																					ሺ1ሻ 
Where, Y is dependent variable (rainfall), X1 and X2 are 1st and 2nd independent variables respectively (lagged 
ENSO and SAM predictors), b1 and b2 are model coefficients of 1st and 2nd independent variable respectively, 
b0 is constant, and c is  the error. Multicollinearity verification among the predictors is the important stage of 
MR modeling. It occurs when the predictors are highly correlated that result in a dramatic change in parameter 
estimates in response to small changes in the data or the model. The Variance Inflation Factor (VIF) is used to 
ascertain the multicollinearity among the predictors. Lin (2008) found that a multicollinearity problem exists 
among the predictors if the VIF values greater than 5–10. 
 
The performances of MR models were assessed by adopting several error indices and statistical performance test 
parameters which are widely used for the evaluation of prediction model. These includes: (i) Root mean square 
error (RMSE), (ii) Pearson multiple correlations (R), (iii) Willmott index of agreement (d), (iv) Variance 
Inflation Factor (VIF), (v) F-test and t-test. To overcome the shortcomings accompanying with R, MAE, and 
RMSE, Willmott (1981, 1982) developed the index of agreement (d), which were used for validating the 
developed forecasting models. Moreover, Willmott’s measure is more appropriate for the investigation of model 
validation, where observed and model-predicted values need to be compared. The index of agreement (d) is 
expressed by the following equation 2: ݀ = 1 െ ቆ ∑ሺܲ݅ െ ܱ݅ሻଶሾ∑ሺ|ܲ݅ െ തܱ| + |ܱ݅ െ തܱ|ሻଶሿቇ																																																																																																																														ሺ2ሻ 
Where, Pi is predicted or modeled value of the ith observation and Oi is the observed value of the ith 
observation. The optimum value of d is 1 called the better the model meaning that all the modeled values fit the 
observations (Willmott 1981, 1982). The SPSS statistical software was used to accomplish the single and 
multiple regression correlation tests. The correlations which are statistically significant at 1 and 5 % levels were 
considered in this study. The data were divided into two sets, years from 1957-2009 were used for calibration of 
the models. Later four years from 2010-2013 were selected as the out-of-sample test set to evaluate the 
generalization ability of the developed forecasting models. 

4. RESULTS AND DISCUSSION 

For evaluating the rainfall predictability, single/individual correlations between south Australian spring rainfall 
(S-O-N) at any year ‘n’ with lagged monthly values of ENSO and SAM climate predictors (NINO3, NINO4, 
NINO3.4 and SOI were chosen as ENSO predictors) from Decn-1-Augn (‘n’ being the year for which spring 
rainfall is predicted) were investigated. The correlations of rainfall with single predictor within the limits of 
statistical significance level and multicollinearity among the predictors were chosen for further MR analysis. It 
was observed that the maximum three months’ (i.e. June, July and August) lagged SOI, Nino34 and Nino4 
climate predictors have significant correlation with spring rainfall, whereas maximum five months of significant 
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lagged relation was found with SAM predictor. Moreover there is no further significant relationship for lags 
more than five months. Correlations of different lagged-time effects of individual climate predictors and SA 
spring rainfall are presented in table 1.  
 

Table 1. Correlations of the different lagged time effects of individual climate predictors with spring rainfall 

Station Lagged climate indices 

 SAMApr SOIJul  SOIAug Nino34Jun Nino34Jul Nino34Aug Nino4Jun Nino4Jul Nino4Aug 

Tarcoola 0.28* --- 0.33* -0.30* -0.31* --- -0.32* -0.37** -0.31* 

Mount 
Eba 

0.29* 0.30* --- -0.33* -0.36** -0.32* -0.36** -0.42** -0.39** 

**: correlations are statistically significant at 1% level, *: correlations are statistically significant at 5% level 

 
The results showed good consistency with the previous findings of Chowdhury and Beecham (2013); Cai et al. 
(2011); Nicholls (2010) and Menegnini et al. (2007). It is seen that Tarcoola is showing better correlations of 
SOI than Mount Eba station. In Mount Eba, both Nino34 and Nino4 predictors are showing better correlations 
with spring rainfall compared to Tarcoola. Spring rainfall is significantly influenced by SOI, particularly in July 
and August, but no influence in June’s rainfall like other phases of ENSO indicators. Moreover, the spring 
rainfall is also found significantly correlated by SAM driver in April in this region. The other phases of ENSO 
that is Nino34 and Nino4 having much influence compared to other climate predictors. 
 
The combined lagged-predictor model sets were organized based on the significant single and separate lagged 
relationship obtained in table 1 with ENSO and SAM climate predictors. Then, ENSO-SAM based combined 
predictor model input sets were used for further multiple regressions modelling in order to investigate the 
predictability of spring rainfall with combined climate model. F-test and t-test were conducted to evaluate the 
significance levels of the MR models and the regression coefficients. Among the developed models the ones that 
follow all the limits of statistical significance level were selected, the models having lower error were chosen as 
the best model for rainfall prediction.  
 
The results in table 2 shows the summary of the best developed MR models for the two different stations 
mentioning the values of regression coefficients and Variance Inflation Factor (VIF). The VIF indicators for the 
selected models are one and thus there is no multicollinearity problems exist among the predictors. Moreover, 
the D-W test statistics fall around a value of two which elucidate that the residuals of the predicted models has 
no autocorrelation and they are independent that confirmed the goodness-of-fit of the models.  
 

Table 2. Summary of the best MR models (significant correlations at least 5% level) 

Station Models Coefficient VIF 

Const. SOIJun SOIJul SOIAug SAMApr  

Tarcoola SOIAug-SAMApr 16.19 --- --- 4.64 1.95 1.00 

Mount Eba SOIJul- SAMApr 11.68 --- 3.36 --- 1.50 1.00 

 
Various performance evaluation statistics such as RMSE, multiple regression correlations (R) and index of 
agreement (d) of the best MR models during the calibration periods for the two studied regions are shown in the 
following table 3. SOI-SAM based models demonstrated statistically significant with better predicting ability for 
south Australian spring rainfall, with R= 0.44 for Tarcoola and 0.40 for Mount Eba.  
 

Table 3. Performances of the MR models during calibration periods 

Station Models Results for calibration period  

(1957-2009) 

R RMSE d  

Tarcoola SOIAug-SAMApr 0.44 10.06 0.55 

Mount Eba SOIJul-SAMApr 0.40 8.24 0.50 
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After calibrating the models an out-of-sample tests were carried out on the years from 2010-2013 to evaluate the 
future rainfall predicting ability of the developed models. Similarly the RMSE, multiple regression correlations 
(R) and index of agreement (d) statistics were calculated during the model validation periods for the same 
regions, the results are shown in the table 4. MR model in validation stage is showing better generalization 
ability for all stations; however the ability of MR models to forecast out-of-sample sets improves significantly 
for Tarcoola with R= 0.94. The RMSE values of the testing sets for MR models are also compatible compared to 
the calibration stage. Mount Eba is having higher index of agreement value (d) in validation sets than other 
region; however the R value is bit smaller than other stations. All the ‘d’ values in the validation sets are more 
than 0.50 confirming that the SOI-SAM based combined climate predictor models are capable of predicting 
south Australian spring rainfall. 

 
Table 4. Performances of the MR models during validation periods (out-of-sample test sets) 

Station Models Results for validation period  
(2010-2013) 

R RMSE d  
Tarcoola SOIAug-SAMApr 0.94 11.99 0.51 

Mount Eba SOIJul-SAMApr 0.83 12.07 0.55 

It can be seen from the table 4 that after combining the climate predictors, it significantly increased the rainfall 
predictability up to 94% for Tarcoola with SOIAug-SAMApr model. Considering the correlation, statistical 
performance parameters and lower error, the best model developed in Tarcoola among the predicted models is 
shown in following equation 3: Rainfall = 4.64 × SOIሺAugሻ + 1.95 × SAMሺAprሻ + 16.19																																																																																										ሺ3ሻ 

 
Figure 2. Performances of the best predicted model (1957-2009: calibration, 2010-2013: validation period) 

 
Figure 2 shows the performances of the best models. Multiple regressions with combined-lagged climate 
predictors were able to model the observed rainfall in a way that the models follow the pattern of rainfalls 
several years in advance with very good accuracy. 

The simulation results as well as various evaluations of statistical significances demonstrated that the developed 
SOI-SAM based combined climate models are capable of predicting spring rainfall. The developed MR models 
in validation period are showing an overestimation of the actual observed data series that means other climate 
influence may also be involved and should be taken into account for more accurate predictions in future studies. 

5. CONCLUSION 

Study focused on investigating the influence of single and combined lagged ENSO and SAM climate predictors 
on South Australian spring rainfall. NINO3, NINO4, NINO3.4 and SOI were chosen as ENSO climate 
predictors. The correlations of rainfall with single predictor within the limits of statistical significance level and 
multicollinearity among the predictors were chosen for further MR analysis. It was observed that the maximum 
three months (i.e. June, July and August) lagged SOI, Nino34 and Nino4 climate predictors have significant 
correlations with spring rainfall, whereas maximum five months significant lagged relation was found with 
SAM predictor. Results also demonstrated that the highest and significant correlations were achieved between 
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spring rainfall and single climate indices with maximum of three month lagged for ENSO and five months 
lagged for SAM predictors. Moreover there is no further significant relationship for lags more than five months. 
It is seen that Tarcoola is showing better correlations of SOI than Mount Eba station. In Mount Eba, both 
Nino34 and Nino4 predictors are showing better correlations with spring rainfall compared to Tarcoola. Spring 
rainfall is significantly influenced by SOI, particularly in July and August, but no influence in June’s rainfall has 
been found like other phases of ENSO indicators. Moreover, the spring rainfall is also found significantly 
correlated by SAM driver in April in this region. The other phases of ENSO that is Nino34 and Nino4 having 
much influence compared to other climate predictors. Furthermore, the combinations of significant lagged 
predictor variables were used in MR modeling to investigate the predictability of spring rainfall. The RMSE 
values of the validation sets for MR models are compatible compared to the calibration stage. Mount Eba is 
having higher index of agreement value (d) in validation sets than other region; however the R value is bit 
smaller than other stations. All the ‘d’ values in validation sets are larger than 0.50 confirming that SOI-SAM 
based combined climate predictor models are capable of predicting south Australian spring rainfall with good 
accuracy. 

Multiple regression (MR) models with combine-lagged climate predictors (SOI-SAM) showed better 
generalization ability for both the model calibration and validation periods for all the stations. Results also 
demonstrated that rainfall predictability significantly increased using combined climate predictors compared to 
predictability with individual effects of predictors. The attained combined model predictabilities are 44% for 
Tarcoola and 40% for Mount Eba during calibration period. The predictabilities were significantly enhanced 
during model validation; that are 94% for Tarcoola and 83% for Mount Eba. In general, SOI-SAM based models 
showed good generalization ability for both the stations. Therefore, SOI-SAM based combined predictor models 
demonstrated statistically significant relationships with good forecasting ability for south Australian spring 
rainfall. The statistical analyses outlined the capabilities of combined climate predictors in compared with their 
single/individual influences for predicting spring rainfall using multiple regressions modeling. Further 
investigations of this method with other rainfall stations may be added to suggest a generalize model for rainfall 
forecasting which will be covered in future studies. 
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