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Abstract: Streamflow prediction based on hydrological models generally requires model calibration 

using observed discharge derived from a rating curve that requires accurate, frequent and sustained 

measurements of the flow rate. However, the remoteness of many catchments increases the difficulties and 

costs of measuring discharge data in these areas. Even at gauging stations with some discharge 

measurements, the resulting relationship can still has high uncertainties, particularly for larger magnitude 

flows where discharge measurements are absent. 

In this study, methods to calibrate streamflow models using only the time series of stream level 

measurements, without converting it to discharge values, are explored. With an emerging remote sensing 

technique that estimates stream level using satellite altimeters, the methods can potentially enable streamflow 

model calibration over ungauged catchments. Two prospective calibration schemes, which are not reliant on 

observed discharge data, are examined: i) Spearman Rank Correlation (denoted by SRC) based calibration 

between observed stream level (hobs) and modelled streamflow (Qest); ii) Inverse Rating Curve (IRC) function 

based calibration using Nash-Sutcliffe Efficiency (NSE) between the estimated water level (hest), which is 

calculated from the modelled streamflow using an inverse rating curve, and the observed water level data 

(hobs). The new calibration schemes are applied to two catchments (604053 and G8110004 from the Bureau 

of Meteorology’s Hydrologic Reference Stations) and the efficacy of the methods are examined by 

comparing the modelled discharges, which are calibrated by the new schemes, to the observed discharge. A 

control case that is conventionally calibrated against observed discharge is also applied in the efficiency 

analysis.  

The results show that the new calibration schemes could properly predict the runoff events and timings, with 

the linear correlations between the modelled and observed discharges ranging between 0.675-0.889. 

However, compared to the control cases that show adequate prediction of the observed discharge with 

R>0.77 and NSE>0.58, the biases between the results and the observations remain large and are deemed 

unacceptable. The reasons for the biases are associated with the underlying principles of the calibration 

schemes. In particular, the SRC-based method is more sensitive to the rank of the data than to the differences 

between modelled and observed magnitudes. The IRC-based method has difficulty in reproducing the shape 

of the actual power function using only observed and modeled water levels. Of the two new calibration 

schemes, the IRC-based scheme has better performances than the SRC-based method, although the SRC-

based method incurs less computation cost by calibrating fewer parameters.  

The results give cause for optimism in devising a reliable calibration scheme with reduced reliance on large 

quantity of discharge measurements. Future work will focus on conjunctive use of river level data and small 

number of discharge measurements to overcome the aforementioned problem of biases and applications at 

more catchments and with satellite altimetry data.  
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1. INTRODUCTION

Hydrological modelling provides the detailed understanding of water cycles and hydrological systems, 

thereby supporting studies of climate change, water resource management, land use and infrastructure design 

(Lørup et al., 1998; Vörösmarty et al., 2001). Streamflow prediction is one of the most important applications 

of hydrological modelling. The modelling processes require calibration to optimize their performances 

(Gupta et al., 1998), and the observed stream discharge data are essential in the streamflow model calibration 

because streamflow discharge reflects the whole-of-catchment responses to meteorological forcing. However, 

discharge data are generally limited within a catchment, and for many catchments globally, even though 

automated data may be collected on stream level variations. This is because the one-to-one relationship 

between river levels and river discharge volume, namely the rating curve, must be established with accurate 

information of river bathymetry and requires numerous measurements across the entire discharge range to 

define the relationship (Dottori et al., 2009). This is not a trivial task in many remote basins and insufficient 

gauging data can lead to significant uncertainties in river discharge (Bjerklie et al., 2003; Smith et al., 1996). 

Even where accurate discharge data are collected at gauging stations monitoring large catchments, many of 

significant rainfall-runoff events occur in the sparsely gauged, or ungauged, sub-catchments of these larger 

catchments, and so their contribution can be poorly constrained (Alsdorf et al., 2003). The remoteness of 

catchment and sub-catchment outlets and expense of instrumentation limit the number of gauged catchments. 

Since many monitoring projects are undertaking by individual institutions, the spatial and temporal coverage 

and the availability of the data are limited by the scopes and privacies of the individual projects (Vörösmarty 

et al., 2001). Also, the monitoring stations’ capacity of supplying correct and timely discharge data is 

decreasing as well due to the decreasing number of monitoring stations (Vörösmarty et al., 2001). 

To overcome this issue, alternative calibration methods for hydrological modelling that do not rely on 

observed discharge data are highly desirable. Satellite altimetry could be used as a potential source of stage 

data for estimating discharge for monitoring and calibrating models (Smith et al., 1996; Smith et al., 1995). 

However, the current use of the altimetry data in estimating discharge in ungauged locations is constrained 

by the need to convert altimeter water level to discharge with synthetic rating curves (Jung et al., 2010; Smith 

et al., 1996). This current practice still requires significant inputs (e.g., high-resolution river bathymetry) that 

are often unavailable in remote basins or subject to large uncertainties.   

A method that directly uses river stage data in the hydrological model calibration would circumvent the need 

for the conversion to discharge and reduce uncertainty introduced by this conversion. In this way, satellite 

altimetry can provide river stage data at many inaccessible rivers and catchments. Motivated by this 

potential, this work aims to develop such methods to calibrate hydrological models using the river stage data 

and to assess its reliability. In particular, we propose two calibration schemes and apply it to a widely used 

conceptual lumped rainfall-runoff model, the Probability Distributed Model (PDM) (Moore, 2007) at two 

catchments with perennial and ephemeral flow regimes in southwest and north of Australia, respectively. 

Their performance and limitations can be distinguished by comparing against ground truth discharge data. 

This work therefore provides an important cornerstone for future research in using satellite altimetry data in 

model calibration. 

2. STUDY CATCHMENTS

As this work is a precursor to using satellite altimetry data in model calibration, we focus on the calibration 

of the rainfall-runoff model PDM at two catchments suitable for use with the satellite data. In particular, their 

selection is based on the following criteria.  

 The catchment’s size is approximately 1000-5000 km
2
 to

satisfy the requirements of the lumped model, and the

locations of the catchments are within the coverage of

satellite altimetry.

 The study catchment should have a monitoring station that

is close to the satellite altimetry track that can later

provide discharge measurements for verification.

 The geographical condition of the catchments should not

obstruct the satellite altimetry track; and the catchments

should have the potential to provide altimeter data with

sufficient quality.

Following the above conditions, Kent River at Styx Junction 

Figure 1. Distribution of the selected 
catchments.
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Figure 3. Typical relationship between 
water level and discharge (604053) 

(604053) in Western Australia, and East Baines River at VIC Highway (G8110004) in Northern Territory are 

selected. The details are shown in Table 1. The river stage and discharge data are obtained from Western 

Australia Government – Department of Water and Northern Territory Government – Department of Land 

Resource Management, separately.  

Table 1. Site information. 
Catchment ID 604053 G8110004 

Description Kent River at Styx Junction East Baines River at VIC Highway 

Catchment area (km²) 1786 2443 

State WA NT 

Mean daily rainfall (mm/d) 2.058 2.39 

Mean water level (m) 0.35 1.73 

Mean daily discharge (mm/d) 0.097 0.441 

Koppen climate zone classification Temperate - moderately dry winter (warm summer) Tropical - savanna 

Flow duration type Perennial Ephemeral 

3. METHOD

The PDM is used to model streamflow from 1 January 1990 to 31 December 2014 (25 years), and the 

Shuffled Complex Evolution algorithm (SCE-UA) (Duan et al., 1993) is applied to calibrate the model. To 

check the suitability of the model structure and benchmark the performances of the new calibration schemes 

(as follows), a control (conventional) case of using observed discharge data (Qobs) in model calibration is 

made, depicted as Case 1 of Figure 2. The modelled discharge by the control case is represented as Qcr.  

Figure 2. Illustration of control case (Step 1) and two new calibration schemes (Step 2 and Step 3). 
(Acronyms in the diagram: Q_obs - observed discharge; Q_est – estimated discharge, h_obs – observed water level; 
h_est – estimated water level, Q_cr – modelled discharge from the control case; Q_SRC – modelled discharge from 
the Spearman rank correlation based scheme; Q_IRC – modelled discharge from the inverse rating curve function 

based scheme; h_IRC – modelled water level from the inverse rating curve function based scheme.) 

Two novel calibration schemes based only on river stage data (hobs) are proposed: 

 Spearman rank correlation based calibration scheme (denoted by SRC) (Case 2 of Figure 2)

The water level (h) and discharge (Q) are expected to share a monotonic relationship that can be

measured by the Spearman Rank correlation coefficient, ρ

 𝜌 = 1 − 
6∑𝑑𝑖

2

𝑛(𝑛2−1)
 ,                            (1) 

where di = xi - yi is the difference between ranks and n is the 

sample size. ρ varies between -1 and 1, and a value of 1 or -1 

means the paired data have a perfect monotonic relationship. 

The Spearman rank correlation was chosen due to its lower 

sensitivity to noise compared to an alternative correlation 

metric, Kendall-tau rank correlation (Glantz, 2012).  

 Inverse rating curve function based calibration scheme (IRC)

(Case 3 of Figure 2)

The relationship between water level h and discharge Q

(Figure 3) can typically be expressed by a power function as:

𝑄 = 𝑎0 + 𝑎1ℎ
𝑎2   (2) 
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where a0, a1 and a2 are parameters requiring calibration. By inverting equation (2), the estimated water 

level data (hest) can be obtained from the estimated discharge (Qest): 

ℎ𝑒𝑠𝑡 = (
𝑄𝑒𝑠𝑡−𝑎0

𝑎1
)
1
𝑎2   (3) 

This calibration scheme aims to calibrate the estimated water level (hest) against the observed water level 

data (hobs) using Nash- Sutcliffe Efficiency (NSE) to achieve more accurate calibration results.  

Several statistical metrics are used to evaluate the results. The first one is the correlation coefficient R, which 

is an indicator of the linear relationship between the observations and the estimated data (Moriasi et al., 

2007). The second is the NSE which is commonly applied in hydrological modelling as a combined measure 

of correlation and multiplicative and additive bias between the observed data and estimated data (Gupta et al., 

2009). We also compare the first and second statistical moments of the simulated streamflow to distinguish 

the presences of biases. 

4. RESULTS AND DISCUSSIONS

The calibration performances for the two catchments are shown in Table 2. Control case performances 

(represented by R and NSE) are shown in columns 2 and 3. The modelled discharges from the two calibration 

schemes are compared to the observed discharge in columns 4 to 7. Similarly, the last four columns display 

the comparisons of the results from new schemes with that from the control case.  

Table 2. Verification results. 

Catchment 

ID 

Control case 

performance 
Estimated Q vs Observed Q Estimated Q vs Q from control case 

R of Qcr 

vs Qobs 

NSE of 

Qcr vs 

Qobs 

R of 

QSRC vs 

Qobs 

R of 

QIRC vs 

Qobs 

NSE of 

QSRC vs 

Qobs 

NSE of 

QIRC vs 

Qobs 

R of 

QSRC vs 

Qcr 

R of 

QIRC vs 

Qcr 

NSE of 

QSRC vs 

Qcr 

NSE of 

QIRC vs 

Qcr 

604053 0.899 0.782 0.853 0.889 -0.710 0.706 0.909 0.988 -2.463 0.629 

G8110004 0.772 0.580 0.675 0.751 0.324 0.125 0.853 0.958 0.540 0.346 

The control cases, which involved calibration against the observed discharge data, show that the PDM model 

was able to adequately predict the observed discharge with high R≥0.77 and NSE≥0.58, and thus both the 

study catchments are suitable for testing the new calibration schemes. The high values of correlation 

coefficients for the two study catchments mean that the PDM can simulate the trends of the streamflow; and 

the relatively high values of NSE indicate that the PDM has satisfactory skills in reproducing the overall 

behaviour of the observed streamflow time series. Some multiplicative and additive biases in the control case 

can be noted by examining the ratios of mean values and standard deviations between Qcr and Qobs (Table 3). 

The values represent the control cases’ underestimation of the whole volume and variation of the observed 

discharge.  

Table 3. Ratios of mean values and standard deviations between Qcr and Qobs. Biases correspond to 
deviation of the ratios from unity.

Catchment 

ID 
mean(Qcr)/ 

mean(Qobs) 

stdev(Qcr)/ 

stdev(Qobs) 

mean(QSRC)/ 

mean(Qobs) 

stdev(QSRC)/ 

stdev(Qobs) 

mean(QIRC)/ 

mean(Qobs) 

stdev(QIRC)/ 

stdev(Qobs) 

604053 0.828 0.757 2.830 1.770 1.184 1.167 

G8110004 0.577 0.849 0.295 0.364 1.128 1.443 

4.1. Performance of the new calibration schemes 

The calibration results from both the SRC- and IRC-based schemes are compared to the observed discharge 

data (Qobs) and modelled discharge from the control case (Qcr) to check whether the methods could simulate 

the streamflow (Table 2).  

Both catchments show good linear relationships (R≥0.68) between the modelled and the observed discharge 

and even better relationships between the control case modelled discharge and the SRC and IRC modelled 

discharge. The hydrographs of the verification results (Figure 4) show that the modelled discharge simulates 

every runoff event and can properly fit their timings and trends. However, the results show considerable 

biases between the estimated and the observed data resulting in the low values of NSE in Table 2. In 

addition, ratios of mean values and standard deviations in Table 3 are considerably larger than the control 

case. This is in fact expected because, for the control case, the observational data obviously contain 

information on the true dynamic range of discharge. This information enables minimization of biases in 

simulated discharge via NSE-based optimization. However, when only river stage data were used in the 

SRC-based method, the simulated discharge will match the trend of the water level rather than its magnitude 
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because the information on the absolute range of discharge is absent. For the IRC-based scheme, the added 

analytical function may provide a slightly stronger relationship between discharge and water level. However 

erroneous estimates of the IRC parameters can also lead to biases.  

Figure 4. Observed and simulated streamflow hydrographs for both catchments. The figure displays three 
years’ verification results by control case, SRC-based and IRC-based schemes. 

Table 4. Calibrated parameters from control case and the new schemes. Parameters which have more than 
-50% or +100% deviations from the control case are marked in red.  

Parameter group Parameter 

604053 G8110004 

Control 

case 

SRC-based 

scheme 

IRC-based 

scheme 

Control 

case 

SRC-based 

scheme 

IRC-based 

scheme 

Probability-distributed store 

Cmax 977.3 856.2 939.2 681.8 681.1 334.4 

b 0.801 1.476 1.365 1.478 0.467 1.614 

CminRatio 0.118 0.020 0.115 0.050 0.015 0.031 

Evaporation function be 20.6 13.4 164.4 316.5 87.68 387.4 

Recharge function 

bg 351.0 653.2 514.8 154.4 471.6 355.5 

kg 1506.6 1472.2 775.2 1799.1 1382.2 452.5 

StRatio 0.823 0.829 0.363 0.652 0.880 0.913 

Groundwater storage routing kb 3.26 27.63 10.42 14.45 59.92 37.03 

Surface routing 
k1 3.296 7.822 2.986 0.048 2.030 0.466 

k2Ratio 0.232 0.012 0.058 0.936 0.217 0.222 

Inverse rating curve function 

a0 0* - -9.80e-3 0* - -5.47e-3 

a1 6.04e-7* - 4.18e-6 3.17e-4* - 5.72e-4 

a2 1.92* - 1.739 1.32* - 1.37 

*derived from the observed rating curve

The calibrated model parameters from control cases and new calibration schemes are shown in Table 4. The 

similarity of the parameters is an important indicator of suitability of the new calibration schemes, while the 

dissimilarity does not necessarily indicate poor performances. The new calibration schemes, in comparison to 
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the control case, are less effective in simulating the parameters that represent the groundwater storage routing 

and surface routing. These mismatches of the new schemes contribute to the biases, which are significantly 

larger than the control case, between the estimated data and the observed data. Compared to the SRC-based 

scheme, the IRC-based scheme can generate calibrated parameters closer to the control case.  

To mitigate the biases in the SRC- and IRC-based methods, there are two prospective approaches. First, in 

order to correct the biases in the modelled discharge relative to the observed data, an additional parameter, 

conceptually representing effective catchment area, could be used to rescale the calculated data. This 

parameter could be added in the calibration processes as a universally transferrable parameter based on a 

regionalized regression relationship between discharge and catchment area. Second, the simulated discharge 

data could be anchored to a small number of observed discharge values through a multi-objective 

optimization. Of course, these approaches will require additional in situ discharge measurements to supply 

information on absolute discharge volume. However it is important to note that the observational needs are 

arguably less extensive and costly than the current practice of defining an entire rating curve. In future work, 

we are extending the methods to more catchments and will attempt the bias-correction for all of those. 

4.2. Spearman Rank correlation scheme vs inverse rating curve function scheme 

The relative performance and benefits of using the SRC-based scheme and the IRC-based scheme are 

summarized in Table 5. Considering both the R and NSE metrics in Table 2, the latter has better performance 

in reproducing temporal variability of observed discharge and simulated discharge of the control case. The 

two calibration schemes have both pros and cons in the aspects of performance and calibration process.  

Table 5. Comparison of SRC based scheme and inverse rating curve based scheme. 
Items SRC based scheme Inverse rating curve based scheme 

Calibration process 

 Fewer parameters (11 parameters)

 Less calculation time (about 1.5 hours*)

 Easy to obtain the global optima

 More parameters (14 parameters)

 More calculation time (about 2.5 hours*) 

 Hard to obtain convergence and global optima

Calibration 

performance 
 Slightly lower performance: lower linear 

relationship with the observation, larger biases 

 Better performance: higher linear relationship

with the observation, smaller biases

*Based on the computation by Intel Core i7-3370@3.4GHz, RAM – 8.00GB

5. CONCLUSION

To overcome the challenges of lacking discharge data for modelling streamflow prediction, two schemes that 

use water level data in the hydrological model calibration are explored. The first scheme utilizes non-linear 

Spearman Rank correlation between modelled discharge and the observed water level. The second scheme 

adopts an inverse rating curve as a part of the streamflow model, making the model output comparable to the 

observed water level. 

According to the results, both of these schemes provided reliable predictions of the temporal variability of 

runoff events as the modelled discharge shows strong linear correlation with the observation data (R values of 

modelled and observed discharge range from 0.675 to 0.889). The inverse rating curve based scheme 

exhibited better performance. However, the schemes have poor performances in fitting the observed 

discharge magnitudes. The reasons for the biases are likely to be inherent to the calibration schemes. The 

rank correlation method is more sensitive to the rank of the data than to the differences between modelled 

and observed magnitudes. The inverse rating curve function has large uncertainty in the calibration process, 

particularly in matching the shape of the power function using only observed and modeled water levels.  

Future work will focus on improving the calibration results. It will investigate developing methods to correct 

the biases of the new method using catchment attributes or a small number of discharge observations. 

Moreover, more catchments with variable characteristics should be tested to uncover possible underlying 

meteorological and hydrological influences.  

However, there are still some limitations in applying the altimeter water level data to the proposed calibration 

schemes. Firstly, the repeat frequency of some satellite data is large (i.e. 35-days repeat cycle for satellite 

ENVISAT) (Medina et al., 2008), thus it is hard to predict daily and weekly discharges. Secondly, as the size 

of footprint is usually large (~ a few hundred meters), these data are mainly suitable for large water bodies 

and may bring errors in the modelling of smaller rivers (Leon et al., 2006).  

The application of water level data directly in the hydrological model calibration is proved promising in 

streamflow prediction. After the bias issue and the limitations of satellite altimeter data are addressed, future 

use of the altimeter water level data in discharge estimation in ungauged areas will be investigated. 
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