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Abstract: Passive microwave remote sensing by the Soil Moisture and Ocean Salinity (SMOS) satellite 
enables observations of surface soil moisture at global scale. This involves a retrieval process that uses a 
radiative transfer model to relate satellite-observed radiances to geophysical variables such as soil dielectric 
constant and soil moisture. The L-MEB (L-band Microwave Emission of the Biosphere) based retrieval 
products of SMOS have previously been evaluated to show reasonably good agreement with ground 
measurements. An alternative product is based on the Land Parameter Retrieval Model (LPRM), which has 
been adapted for a wide range of X- and C-band sensors to retrieve soil moisture from single-angle 
observations. From the implementation viewpoint, LPRM is attractive in its limited requirements for 
additional auxiliary parameters and in its simple geophysical parameterization. The research gaps lie in the 
limited previous study on retrieving SMOS multi-angular observations using LPRM. The development of a 
LRPM-retrieved SMOS product is also motivated by establishing an algorithmic consistency across multiple 
C-, X- and L-band sensors, allowing them to be compared more directly for relative performance.  

This study considers the LPRM-like retrieval algorithm based on generic Radiative Transfer Equation (RTE) 
and uses a controlled numerical experiment to determine the properties of LPRM when acting on synthetic 
multi-angular SMOS observations. The influences of observational uncertainties, model parameter 
uncertainties and multi-angle observations (c.f. single-angle) are evaluated on the retrieval performance. In 
particular, the Markov Chain Monte Carlo (MCMC) algorithm is used to quantify the uncertainties in, and 
correlations between, retrieved parameters, under these influences.  
 
The main findings of this study are listed as follows, 

• According to retrieval sensitivity analysis, vegetation optical depth (τ) and surface temperature (Ts) are 
more critical parameters in the retrieval model compared to surface roughness and scattering albedo, and 
they may be retrieved simultaneously with soil moisture in a 3-parameter retrieval configuration; 

• The uncertainty in brightness temperature (TB) has more significant impact on a vegetated-wet scenario 
than on a bare-dry case: vegetated-wet surface can tolerate 2K brightness temperature uncertainty to 
achieve the target retrieval accuracy whereas bare-dry surface can tolerate as much as 8K TB uncertainty; 

• MCMC results demonstrate the advantages of LPRM soil moisture retrieval with multi-angular TB 
observations over single-angle retrievals in terms of higher robustness and less uncertainty in retrieval 
results. 

This work therefore provides guidance to adapting LPRM for SMOS data and soil moisture retrieval at 
continental scale. 
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1. INTRODUCTION 

Microwave satellite sensors allow estimation of land-surface soil moisture minimally interrupted by clouds 
and vegetation cover. These satellite-retrieved soil moisture products have shown potential in improving 
(hydrologic, land-surface and weather) model analyses and/or prediction , studying global change in water 
cycle and drought monitoring (e.g. Brocca et al., 2012). Several studies have argued that passive remote 
sensing at L-band (1.1-1.7 GHz) is one of the most promising techniques due to low sensitivity to cloud and 
vegetation contamination, and high sensitivity to soil moisture fluctuations at deeper depths. These have led 
to the ESA’s Soil Moisture and Ocean Salinity (SMOS) mission, as well as the NASA’s Soil Moisture Active 
and Passive (SMAP) mission. SMOS is unique in terms of its instrumental design – its Microwave Imaging 
Radiometer by Aperture Synthesis (MIRAS) makes radiance observations of a single land surface scene at 
multiple incidence angles. The official ESA algorithm, L-MEB (L-band Microwave Emission of the 
Biosphere) retrieval method, is sophisticated by accounting for spatial heterogeneity in a mixed scene, 
dependency between surface roughness and soil moisture, and soil temperature difference between surface 
and subsurface sampling depth in the presence of different soil types. Many auxiliary data are required for its 
implementation. An alternative algorithm is the Land Parameter Retrieval Model (LPRM), which has been 
applied to single-angle observations from a wide range of C- and X-band sensors, namely SMMR, TMI, 
AMSR-E and WindSat. LPRM has certain implementation advantages due to its lesser dependency on 
auxiliary data and simplified parameterization of land surface characteristics (e.g. de Jeu et al., 2009). 
Evaluation studies comparing the L-MEB based SMOS product with LPRM-based AMSR-E product found 
that their performances are comparable (e.g. Su et al., 2013).  

It is therefore of particular interest to apply LPRM to SMOS data. Specifically, it is desirable to maintain an 
algorithmic consistency across historical and present passive sensors, especially for the purpose of combining 
them to construct multi-decadal soil moisture climatic record within the ESA’s Climate Change Initiative 
(CCI) program. The LPRM products are part of the passive and active-passive ESA CCI soil moisture 
product (e.g. Wagner et al., 2012). Indeed, the application of LPRM to SMOS has been achieved recently by 
Van der Schalie et al. (2015) and was tested in the Murrumbidgee catchment, southeast Australia. The LPRM 
algorithm was applied to observations at three different incidence angles (45, 52.5 and 60°) separately to 
yield soil moisture estimates that are similar to the L-MEB estimates. The retrieved values at different angles 
are statistically identical within the confidence intervals. However, inversion of a retrieval model to fit 
single-angle observations can be expected to be more susceptible to observational errors than fitting to multi-
angle data. Multi-angle data can provide tighter constraints on the model parameter values and retrieved 
values, although the amount of soil moisture information diminishes with decreasing incidence angles. 

Within this context, we pursue an adaption of LPRM algorithm for SMOS multi-angle observations. To 
achieve this, this paper investigates the following research questions. (1) What are the model parameters that 
can be estimated simultaneously with soil moisture through inversion of radiative transfer equation (RTE) 
model with simple parameterization? (2) What is the maximum level of observational errors to achieve a 
benchmark target of 0.04 m3/m3 retrieval errors? (3) What are the levels of improvement of using multi-angle 
data over single-angle data in the retrieval process? For these purposes, we use controlled numerical 
experiments based on a generic implementation of RTE with simple model parameterization akin to LPRM, 
to maximize clarity of our finding. We also use the Markov Chain Monte Carlo (MCMC) method to 
accurately determine the joint probability distribution amongst model parameters (including soil moisture), 
allowing unbiased estimation of their dependencies and uncertainties.  

The paper is organized as follows. Sec. 2 reviews the RTE model in brief and describes our controlled 
experiments. Sec. 3 presents the results on retrieval sensitivity and Sec. 4 the MCMC analyses. Sec. 5 offers 
our concluding remarks. 

2. METHODOLOGY 

2.1. Forward Model 

The radiative transfer principle of Mo et al. (1982), describing the upwelling radiative emission from land 
surface contributed by soil, canopy and atmosphere layers can express observed brightness temperature at 
satellite sensor TB with the following Radiative Transfer Equation (RTE), 

vvCPrvCvsPrPB TeTTeT ΓΓ−−−+Γ−−+Γ= )1()1)(1()1()1( )()()( ωω , (1) 

where P refers to vertical or horizontal polarization, Γv the vegetation transmissivity, ω the single-scattering 
albedo, er(P) the rough surface emissivity and Ts the surface effective soil temperature, which is assumed to be 
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equal to Tc, the vegetation canopy temperature in LPRM. In other words, LPRM is more suited for periods 
when there is a thermal equilibrium between soil layer and vegetation. 

The TB observations are subject to scattering and absorption by vegetation. In particular, Γv = exp(-τ/cosu) in 
Eq. 1 is a function of the vegetation optical depth τ and incidence angle u. The surface roughness affects 
surface emissivity by increasing the scattering effect and reducing the sensitivity of emissivity to soil 
moisture variations. Accordingly, Choudhury et al. (1979) developed an empirical roughness correction 
model given by er(P) = 1- Rs(P)exp(-h2cos2u), where Rs is smooth-surface reflectivity, and h is regarded as an 
effective roughness parameter. The Fresnel reflectivity equations allow us to relate Rs to soil dielectric 
constant κ. In turn, empirically-derived dielectric mixing models with known information about the soil 
porosity, wilting point (or sand/clay fractions) and soil temperature, enable inference of volumetric soil 
moisture from the κ estimate. The Wang-Schmugge model is chosen for this study. 

To summarize, the observed brightness temperature can be expressed as a function of five unknown a priori 
model parameters {κ, Tc, ω, τ, h} that must be resolved either from auxiliary data or from the retrieval 
(model inversion) process. The parameters {Tc, ω, τ, h} can be regarded as auxiliary parameters. In LPRM, τ 
is retrieved simultaneously with κ, and Tc is given by either Ka-band radiance observations or from models. 
Constants ω and h are used for C- and X-band retrievals, although de Jeu et al. (2009) parameterized h as a 
function of soil moisture and incidence angles for L-band retrieval with airborne data. 

2.2. Synthetic Experiment  

SMOS-like multi-angular TB is generated by forward model (1) according to each defined test scenario 
(Table 1), representing the actual land surface emission – ‘referenced’ TB at multiple incidence angles 
ranging from 0 to 60° (at 1° intervals) and at the two polarizations. A ‘measured’ TB is generated by adding 
Gaussian random errors to the ‘referenced’ TB. The Gaussian parameter error structure is more preferable 
because the synthetic true TB (‘measured’ TB) is more likely to have the similar feature with the real-life TB 
observed by satellite and the results are therefore more reliable and convincing. The ‘measured’ TB is input to 
the retrieval model to estimate soil dielectric constant κ and soil moisture, amongst other model parameters. 
The retrieval process involves optimizing the values of κ (and other prescribed model parameters) such that 
the model simulates TB values that most closely match ‘measured’ TB. The optimization is set up as a 
nonlinear, least-square minimization, where the objective function is based on the difference between 
‘simulated’ and ‘measured’ TB. We consider different configurations of the retrieval process by choosing 
different auxiliary parameter(s) for simultaneous estimation with soil moisture. 

2.3. Scenario Definition 

Our synthetic experiments are based on six scenarios (listed in Table 1), distinguished by different soil 
moisture and vegetation canopy conditions. The roughness parameter h is set constant to 0.2, representing 
relatively smooth surface, which is consistent with the agricultural and natural areas surface roughness 
conditions (e.g. Panciera et al., 2009). The dependence of h on soil moisture has been ignored for simplicity 
in this preliminary study. At L-band, ω is generally found in the literature to be low and for most algorithms 
it is assumed to be zero (e.g. Wigneron et al., 2007), which is similarly assumed in our study. 

3. THE RETRIEVAL SENSITIVITY ANALYSIS 

The known soil moisture and auxiliary parameter values are used as the synthetic truth value to simulate 
‘measured’ SMOS TB. The modelled TB is generated by forward model, with varying two parameters (soil 
moisture and one of auxiliary parameters) within the entire parameter feasible space: θ∈[0,0.7]m3/m3, 
τ∈[0,1], ω∈[0,0.3], h∈[0,1.5], and Ts ∈[273,323]K. Root-mean-square error (RMSE) between measured and 
simulated TB over 0-60o angles is computed, and plotted as a function of the two parameter values in Figure 1 
for six scenarios. To allow direct comparisons between variables, the parameter values were normalized so 
that their feasible ranges match the 0-1 range (0 represents the lower limit and 1 represents the upper limit). 
For accurate single-parameter retrieval of soil moisture θ with a priori specification of the four auxiliary 
parameters, it is desirable for the global minimum of the RMSE surface to be well-defined along the y-axis (θ 
axis) within a narrow trough, and global minimum along the x-axes to be poorly defined within a wide 
trough. In other words, the soil moisture can be accurately estimated even in the presence of inaccurate 
values of the auxiliary parameters; the retrieval is insensitive to the auxiliary parameters. By extension, for 
accurate two-parameter retrieval of soil moisture with one of the auxiliary parameters, the global minimum 
should be well-defined along both axes so that the retrieval is sensitive to the both parameters.  
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With these criteria in mind, we compare the three bare soil cases with three vegetated soil cases in Figure 1. 
The presence of vegetation cover widens the troughs for all parameter combinations, which suggest greater 
susceptibility to retrieval errors. Increasing soil moisture appears to have the same effects. For the former, it 
is not surprising as the vegetation canopy attenuates the microwave emission of the underlying soil layer, 
effectively reducing the soil water information in the observations.  For θ-h and θ-ω, troughs about the global 
minima generally have a longer extent along the h and ω axes compared to τ and Ts axes, showing lower 
sensitivity to h and ω when soil moisture is retrieved. Specifically for ω under bare soil scenarios, the 
minimum along the ω axis does not exist because in the absence of vegetation, ω is non-determinate as per 
Equation 1 (the second and third terms containing ω are cancelled). The retrieval shows some sensitivity to h 
in the bare wet soil and vegetated wet soil cases, and sensitivity to ω in the vegetated cases. The diagonal-
shaped trough suggests correlations in errors, i.e., biases in retrieved or input (as a priori) auxiliary parameter 
values will lead to biases in the retrieved soil moisture. The directions of the biases between θ and h are the 
same, whereas they are opposite between θ and ω.  

The results show clear association between errors in θ and errors in τ and Ts; in other words, the retrieval 
errors in θ are sensitive to errors in these two auxiliary parameters. Furthermore, the sensitivity increases 
with increasing soil water content. The larger extents of the troughs along τ and Ts axes indicate that small 
errors in τ and Ts result in large errors in retrieved soil moisture. Therefore, τ and Ts have the most significant 
impact on accuracy of retrieved θ. Given these associations, it is conceivable to retrieve these critical 
auxiliary parameters jointly with soil moisture. In particular, this was exploited in LPRM to estimate θ  and τ 
simultaneously. Henceforth, we focus on the retrieval of three parameters, namely θ, τ and Ts. 

4. MARKOV CHAIN MONTE CARLO ANALYSIS 

MCMC is a stochastic sampling process for realistic statistical modelling. In this study, the DiffeRential 
Evolution Adaptive Metropolis (DREAM) algorithm developed by Vrugt (2015) is used. DREAM is a multi-
chain MCMC simulation algorithm that automatically tunes the scale and orientation of the proposed (the 
prior) distribution of the retrieval model parameters to determine their posterior distributions that are 
conditioned on the L2-based retrieval objective function. It is used here to investigate the influence of 
observational errors in input (multi-angle) TB observations and the benefits of using multi-angle observations 
over single-angle observations. Five iterative chains (10,000 iterations for each chain) for each parameter are 
proposed and overall 50,000 evaluations are conducted with the sum of square errors (SSE) objective 
function, which is used to form the likelihood function for MCMC exploration. 

4.1. Impacts of uncertainty in TB  

We consider different levels of observational errors, with errors’ standard deviation ranging from 0.5K to 8K, 
for four particular scenarios (bare-dry, bare-wet, vegetated-dry and vegetated-wet in Table 1). The posterior 
distribution of the retrieved soil moisture and the two identified auxiliary parameters (τ and Ts) are 
determined by the MCMC method. Specifically, the distribution of the Markov Chain ensemble after 
sufficiently many function evaluations (when the statistics of the ensemble become stationary) represents the 
distribution of the parameter values. 

Figure 2 plots the RMSE in soil moisture and the ranges of retrieved parameters as a function of TB error 
standard deviations. In Figure 2(a), the dashed black line represents the target soil moisture accuracy of 0.04 
m3/m3. The TB uncertainty has a more substantial impact on soil moisture retrieval under wet conditions, 
since the retrieved soil moisture RMSE is much higher than that of dry ones which can tolerate large TB 
uncertainty, as much as 8K. Meanwhile, as expected, the θ retrieval under vegetated soil scenarios is less 
accurate compared with bare soil condition, which is consistent with our finding from the sensitivity analysis 
where vegetated cover reduces soil emission information used for determining the θ. 

Table 1. Selected auxiliary parameter values for six scenarios. 

Scenario θ  (m3/m3) (κ) τ ω h Ts (K) Soil/Vegetation Characteristic 
1 0.03 (3.5) 

0.00 

0 0.2 290 

Dry 
Bare soil 2 0.2 (11.1) Moist 

3 0.4 (27) Wet 
4 0.03 (3.5) 

0.4 
Dry 

Vegetated soil 5 0.2 (11.1) Moist 
6 0.4 (27) Wet 
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The three parameters ranges derived from MCMC chains are presented in Figure 2(b). κ has been converted 
to soil moisture using the dielectric mixing model and the y-axis is normalized with respect to synthetic true 
value. Apparently Ts, indicated by the red boxes, is the most reliable retrieval result; however, retrieved θ is 
influenced significantly by TB uncertainty. This is partially because soil moisture has to be obtained using the 
dielectric mixing model, where both κ and Ts are model inputs. In other words, the uncertainties in these two 
parameters contribute to the soil moisture uncertainty.  

Given that the instrumental radiometric accuracy of SMOS is 2-3K, this synthetic evaluation shows that 
retrievals over vegetated-wet soil are the most challenging given its lower tolerance to observational errors. 
While the results show that the 3-parameter retrieval has relative high robustness and applicability in other 
land surface conditions, reducing the number of parameters may be warranted to minimize the retrieval 
errors, especially over highly vegetated and high moisture environments. For instance, soil temperatures 
derived from numerical models and WindSat satellite (e.g. Parinussa et al., 2012), have been used for LPRM, 

 

 

 

 

 

 

Figure 1. TB RMSE distribution for six scenarios of two-parameter combinations. RMSE is 
computed from the iterative difference between referenced and simulated TB. 
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whereas L-MEB uses the soil temperature data from simplified modeling approach using two moisture and 
temperature data at land surface and at depth.  

4.2. Benefit of Multi-angular LPRM Retrieval 

The single-angular 
TB (45°) and multi-
angular (0-60°) are 
tested under 1K TB 
uncertainty 
scenarios. 
Typically, LPRM 
is applied to high 
incidence angle 
observation, 
ranging from 45° 
to 55°, therefore in 
MCMC study, the 
selection of single 
angle is 45° (e.g. 
van der Schalie et 
al., 2015). The 
referenced TB is 
generated from the 
test parameter set: SM=0.2 m3/m3 (i.e., κ=11.1), τ=0.25, ω=0.03, h=0.2 and Ts=290K. After around 2,000 
iterations, chains for multi-angular TB became converged, and chains for single-angular TB failed to converge 
after the entire iterations. By visually comparing the plotmatrix of the multi-chain behavior during stationary 
state for two types of TB input in Figure 3, the distribution of parameters can be obtained.  

Parameter values for each plot matrix have been normalized (against the true values) and the diagonal 
histograms show the marginal distribution of a single parameter. The comparison of the parameter 
distributions between multi-angular and single-angular MCMC in Figure 3 shows the relative robustness 
between two retrieval approaches. The range of parameter value for multi-angular retrieval is centralized to 
the synthetic truth and follows a Gaussian distribution. The single-angular MCMC results demonstrate that 
parameters tend to spread across wider parameter space and are deviated from the truth. Further, the 
identified critical parameter Ts and τ have narrower distribution compared with h and ω, demonstrating the 
need for retrieving Ts and τ simultaneously with soil moisture or having accurate a priori values. 

It is observed that the paired scatter plots in plot matrix for multi-angular TB indicate that SM-Ts, SM- τ, SM-
ω, Ts -τ, Ts -ω and τ-ω are clearly correlated and these parameters are not mutually independent; whereas, for 
single-angular TB MCMC plotmatrix, there is less dependence demonstrated by all the parameters for single-
angular MCMC results. The difference in MCMC results reveals that the multi-angular TB soil moisture 
retrieval has low uncertainty in retrieval parameters, validating the advantages of LPRM SMOS multi-

Figure 2. Statistics of the MCMCs under different level of errors in TB. (a) RMSE in 
soil moisture for four scenarios; (b) Statistics of the retrieved parameter values (SM, 

τv, Ts) for vegetated-wet scenario.

Figure 3. Plot matrix of last 10% iteration for multi- and single-angular (at 45°) TB with 1K error. Note that 
the range of the x and y-axes are different between (a) and (b); blue dots indicate the synthetic true values. 
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angular TB soil moisture retrieval over the single-angular retrieval, in terms of high robustness and less 
uncertainty in retrieved parameters. 

5. CONCLUSIONS 

Several conclusions can be drawn from the synthetic exploration of LPRM SMOS-like retrieval. First of all, 
the sensitivity analysis demonstrated that τ and Ts are more critical parameters in the retrieval model. They 
can be retrieved simultaneously with soil moisture in a 3-parameter retrieval setup. Further, by testing the 3-
parameter retrieval under a range of TB uncertainties using MCMC method, the thresholds for observational 
error for four idealized water-vegetation scenarios are determined, and the uncertainty in TB has the least 
impact on bare-dry condition but has greater influence on vegetated-wet scenario. Lastly, the benefits of 
LPRM soil moisture retrieval using multi-angular TB observations over single-angle retrieval are 
demonstrated by MCMC analysis result. There is higher robustness and less uncertainty in retrieval results 
compared to single-angular LPRM. The future research opportunity could focus on field validation of LPRM 
against ground soil moisture measurement data and testing three-parameter retrievals against two-parameter 
retrievals. One such location is the Murrumbidgee catchment located in southeast Australia, where the dense 
soil moisture monitoring stations and various land cover types are available. 
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