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Abstract: The second version of the Short-term Water Information and Forecasting Tools (SWIFT2) is a 
suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model 
components and utilities. It is currently developed within the Water Information Research and Development 
Alliance, with a requirement to address both research and operational modelling needs. Catchments are 
modelled using a traditional approach for semi-distributed models: conceptual subareas and a node-link 
structure for channel routing. SWIFT2 comprises modules for calibration, model state updating, ensemble 
runs, output error correction and data assimilation. While applicable to simpler modelling tasks, SWIFT2 is 
designed from the ground up to tackle computationally intensive problems in probabilistic forecasting 
research, with sub-daily time steps over decades, and ensemble sizes in the thousands. Typical retrospective 
ensemble simulation outputs can reach hundreds of gigabytes, and projected runtimes can reach days if not 
parallelized. SWIFT2 simulations are safe for in-memory copy and parallel executions, can make effective 
use of multi-core personal computers or high-
performance compute clusters to address 
computationally demanding research or operational 
requirements. SWIFT2 is written in modern C++ and 
is platform-agnostic. SWIFT2 is architected to offer 
several options for user interfaces. Driven by the 
needs of current users, it is seamlessly accessible 
from high-level interactive languages including R, 
Python and MATLAB (Figure 1). To achieve this, 
the SWIFT API (Application Programming Interface) 
offers a controlled yet fully fledged access to core 
modelling features and concepts. The time series 
handling is performed in a separate library for reuse 
outside of SWIFT2, using advanced C++ templates, 
similar to the Boost libraries. Users have access via 
concise commands in their interactive language of 
choice to high level modelling concepts, such as 
simulations, parameterizers, state initializers and 
objective calculators. SWIFT2 already offers 
sophisticated features for calibration such as 
composability of parameter sets, definition of meta-parameters and non-trivial hard constraints on parameter 
feasibility. This permits the formulation of modelling goals, e.g. calibration, for use in conjunction with state 
of the art third-party model analysis tools such as metaheuristics frameworks. While the robustness and 
correctness of SWIFT2 are the primary development goals, runtime performance and parallel scalability are 
important. Initial measures and usages already show amply adequate operation in calibration mode on multi-
core computers, with a very good multi-threaded parallel scalability on larger catchment models. Known 
performance tuning strategies have been investigated and will further enhance the raw computational 
performance. 
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Figure 1. SWIFT software stack 
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1. BACKGROUND 

1.1. Introduction 

Ensemble streamflow forecasting at short to medium term lead times (0-10 days) is a burgeoning area of 
research, promising to produce more accurate forecasts to longer lead times, with formally quantified forecast 
uncertainties. One major goal of the Water Information Research and Development Alliance (WIRADA) 
between the CSIRO Land & Water flagship and the Bureau of Meteorology (Bureau) is to provide an 
operational short to medium term ensemble streamflow forecasting system for Australia. Research output of 
this alliance consists of new ensemble forecasting methods (e.g. Robertson et al. (2013); Bennett et al. 
(2014); Li et al. (2015); Shrestha et al. (2015)). These methods are implemented in software to support 
current research, but with a clearly stated need to transition to an operational use by the Bureau. WIRADA 
streamflow forecasting software development began with the first implementation of the Short-term Water 
Information and Forecasting Tools (SWIFT) described in Pagano et al. (2011). SWIFT was primarily 
designed for continuous deterministic streamflow forecasting. In this paper we describe SWIFT2, a new 
software that draws on knowledge and methods gained from SWIFT, with enhanced capabilities for short-
medium term ensemble streamflow forecasting. SWIFT2 is able to calibrate hydrological and error models 
used in ensemble streamflow forecasting, generate forecasts retrospectively and in real-time, and be flexible 
and robust enough to meet the needs of WIRADA researchers and Bureau operational forecasters. 

The present paper focuses on the systems design and implementation of SWIFT2. A more user-oriented 
introduction can be found in Perraud et al. (2015). We very briefly outline the main use cases in the next 
section, and the resulting system requirements. 

1.2. Use cases 

Table 1. Modelling use cases 

Use case Description, purpose 

Continuous simulation Daily down to sub-hourly, over a single realization of input time series. 

Near real-time 
forecast 

An operational forecaster can hot start a simulation, adjust antecedent moisture, and forecast streamflow 
using one or more rainfall forecasts.  

Calibration Fitting catchment model parameters to one or more observations, typically one or more streamflow 
gauges. This may include multiple calibration steps over sub-catchments, staged over successive 
streamflow gauges. There are cases where the feasibility region of parameter sets includes non trivial 
constraints, such as Muskingum routing valid over multiple river stretches with different characteristics. 
Defining virtual parameters in a transformed to make the calibration problem more tractable and robust 
is also needed. 

Ensemble Simulation A superset of the Continuous simulation use case, adding a dimension to the data in the form of multiple 
realizations of one or more of the climate input time series. 

Retrospective 
Ensemble Forecasts 

At regular intervals in a Continuous simulation, project streamflow at a lead time over one or more 
forecast of a climate input (typically rainfall forecasts). Storage of ensemble time series and forecasts is 
required. 

Error correction Blending SWIFT2 model states with observations. This use case is not independent of others above, but 
one aspect that can be superposed to them. 

 

There are several computational challenges arising from the use cases in Table 1, mostly due to the finer time 
step resolution or higher number of dimensions compared to what traditional semi-distributed modeling 
systems tackle. Ensemble forecasts often require a very large volume of data to be processed through 
hydrological models. Consider a system that generates a thousand-member ensemble streamflow forecasts at 
an hourly time-step to a lead-time of 10 days, using a semi-distributed conceptual hydrological model with 
100 subareas (a fairly typical example). To generate a single forecast with this system requires an input of 
2.4x107 rainfall data points. The problem becomes particularly acute when generating retrospective forecasts 
to evaluate the performance of a system – a routine requirement in ensemble forecasting - which usually 
requires generating and archiving many years’ forecasts for a range of catchments.  

1.3. Requirements 

To address research needs, forecasting software has to be versatile and flexible enough to accommodate new 
and sometimes complex mathematical method. Primary users of SWIFT2 are using high level languages such 
as MATLAB, R and Python to do their research, and a seamless access to SWIFT2 is needed. The 
computational load in terms of runtime and data size, especially for research needs, requires that parallel 
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execution is possible for SWIFT2 on systems ranging from multi-core personal computers to computational 
clusters. The rise of “cloud” based infrastructure over the recent years is also a development that may impact 
on the SWIFT2 system architecture, though not in the immediate future. 

Operational streamflow forecasts may be used for flood warnings or other crucial services, so software 
suitable for operational forecasting has to be extremely reliable. In addition, forecasts have to be reproducible 
in order to train forecasters and to demonstrate that the system is robust. Finally, the operational forecasting 
software has to be readily maintainable and upgradeable to enable easy implementation of new forecasting 
methods. SWIFT2 can be operated from the Flood Early Warning System (FEWS), using input/output 
adapters to exchange data between the two software systems. 

2. SOFTWARE STACK 

The previous version of SWIFT was written in Fortran 95. We attempted to evolve that version to a 
modelling system more in line with state of the art architectural patterns found in environmental modelling 
framework. While the most recent standards of Fortran (2003 and 2008) include features such as some object 
orientation useful to such a transition, we found development environments and non-numeric Fortran 
libraries were lacking to grow and manage the evolution of the system. SWIFT2 is thus a necessary rewrite in 
C++, albeit with known approaches to include legacy Fortran modules should it be required. To be more 
precise, SWIFT2 uses selected language features up to the C++11 standard, mostly for features where the 
syntax is clearer and more concise than older standards of C++. 

SWIFT2 comprises several libraries, the main of which is a shared (dynamic) library containing modelling 
abstractions (Table 2). 

Table 2. Main modelling abstractions in SWIFT2 

Concept Description, purpose 

Time Step Model Abstraction for lumped modelling processes, responsible for updating its state variables from time step 
to time step in the simulation. 

Node, Link, Subarea A Catchment (which is a Time Step Model) comprises a node-link graph (river system) with subareas 
contributing flows to the links.  

Simulation Aggregation of a Catchment, one or more input or output Time Series, a Time Span and a Time Step 

Ensemble Simulation Aggregation of a Catchment, one or more input or output Time Series of forecasts, a Time Span and a 
Time Step. We strive to keep the code shared with a simple Simulation, despite the fact of two 
additional dimensions to the content of the time series, from scalar data points to ensemble of forecast 
time series 

Parameterizer A high level expression of how to parameterize a Catchment. This includes, but is not limited to, 
hypercubes, as is usually the case in hydrology. This is used to expose free parameters to an 
optimization toolbox. 

Objective Calculator Aggregate of a Simulation and one or more statistics. Returns one or more objective scores when 
requested to evaluate a Parameterizer. 

State Initializer Optional component to a Simulation, a high level expression of how to initialize the states its 
Catchment. Structurally similar to Parameterizer, and indeed can be wrapped by the latter in cases 
where initial state conditions can be parameters fitted by an optimization. This feature is important for 
cases where calibration is performed on short data records, to limit recourse to warmup periods. 

Time Series Time series handling, in memory and input/output. Available stand-alone, independent from other 
concepts. Time series related components are using C++ template programming to facilitate versatility 
and reuse. 

 

The components dealing with time series, their representation in memory as well as input/output, is a library 
distinct from SWIFT2 itself. We did search for existing time series libraries in C++, but did not find 
instances suitable for our needs without significant downsides (dependencies on particular toolsets, financial 

modeling concepts, etc.). By writing an 
independent time series library, other software 
applications, including some that the authors of 
this paper wrote, can use the same 
infrastructure for the management of time 
series without introducing an unnecessary 
dependency on SWIFT2 modelling concepts. 

The preferred time series storage on disk is done with a new convention built for netCDF (Rew et al. 2006). 
There may be an opportunity to release this time series library publicly with an open source license. Figure 2 
shows the declaration of a template time series structure, where the data points can be double, but also 

 

Figure 2. Time series using C++ templates 
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complex structures such as time series, for a consistent codebase across different data types. We used C++ 
template and metaprogramming techniques (Vandevoorde and Josuttis (2002)) to prevent duplication of code 
yet have sensible behaviors for various item data types in time series. Another benefit of this approach is that 
more issues that usually arise at program runtime are caught at compilation time. 

Table 2 does not list optimization algorithms as a feature in SWIFT2. This is a deliberate choice, as there are 
several suitable metaheuristics frameworks in 
C++ or the other languages from which 
SWIFT2 is accessible. Figure 3 shows that the 
modeling abstractions and components from 
Table 2 are in a SWIFT2 shared library (apart 
from the Time Series deliberately separate). 
SWIFT2 models have been calibrated using 
pre-existing metaheuristics tools (for instance 
https://github.com/jmp75/metaheuristics). 

One motivation to use C++ for SWIFT2 is that 
its subset language C is the most amenable to 
allow interoperability from the higher level 
languages used by modelers, and for writing 
adapters to and for external toolsets such as 
external optimization modules. While the initial 
need for a SWIFT2 Application Programming 
Interface (API) was driven by interactive testing 
from R, it has proven to be a salient feature of 
SWIFT2. As of writing, functional access 
arrangements are accessible from more than 4 high-level languages. Examples of usage of SWIFT2 features 

from these languages can be found in 
Perraud et al. (2015). The C API (Figure 
4) is designed to offer up to a binary 
compatibility to users. This provides a 
very stable programming interface for 
e.g. swift packages or modules written in 
R, Matlab, etc. even as SWIFT2 core 
C++ evolves. Importantly, this minimizes 
the overhead of memory management: 
SWIFT2 tracks the use of its main 
modeling instances via shared pointers 

(Figure 4) and keeps the heavy lifting to itself, yet making it available to all applications using it at a minimal 
cost via functions that hide as much complications as possible. 

3. COMPUTATIONAL SCALABILITY 

While the temporal and spatial resolution of model simulations in SWIFT2 is customizable, it is designed 
from the start to handle water yield simulations typically at an hourly or finer temporal resolution. 
Compounding the computational size, primary use cases involve ensemble simulations or ensemble forecast 
simulations, with an ensemble size in the thousands. This is at least an order or magnitude more than we 
tackled a few years ago, and to our knowledge there is no pre-existing catchment modelling software tools 
that could be built upon to scale up to our problem size. 

This section reports an initial assessment of runtime performance. While runtimes and scalability have 
already been more than adequate to perform full scale whole-catchment calibration, we emphasize that the 
figures are only a snapshot mid-2015 that will be used as a baseline. We expect significant speedup 
improvement over the coming year. We have prioritised software correctness and robustness, though of 
course design for runtime performance was taken into account upfront when achievable. Further performance 
tuning strategies are known, and will be enacted upon when needed. 

3.1. Method 

This section reports measures done on a tree-like subarea-link-node models for various stream orders, with 
hourly inputs. While generated, these test case are structurally very close to real models.  

 

Figure 3. SWIFT software stack 

 

Figure 4. SWIFT C/C++ A.P.I. with opaque pointers 
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We present measures for a system with stream order 4 (30 subareas) in Figure 7. Each point is the median of 
10 replicate test runs to reduce measurement uncertainty. 

Figure 7b includes on the ordinate axis is a performance measure, where 1 is assigned to the best performing 
test case.  

S = R / (L N) (1) 

Where R is the test case total runtime length (s), L the simulation length (years) and N the number of 
subareas, equal to the number of links. S is thus the average processor time required to run each subarea/link 
in a model, for each simulation year. 

Let S0 be the lowest S. We define the performance for each test case j as: 

Pj = S0 / Sj (2) 
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Figure 5. Scalability of runtime performance with respect to system size, simulation length and degree of 
parallelism. Each point is the median of 10 replicate test runs to reduce measurement uncertainty. 

3.2. Observations 

Intuitively (perhaps), the fastest performing test case is for the smallest problem size with respect to the three 
factors simulation length, number of subareas and level of parallelism (Figure 5). As the number of subareas 
increases from 2 to 62, we observe a drop in performance, but the performance score tends to plateau and is 
largely within 60 to 70 percent for catchment models with more than 14 subareas. For each case with 14, 30 
and 62 subareas the data points are not markedly different. 

Looking at the cases with 30 and 62 subareas, we notice that for a given number of threads, we observe a 
drop of performance for longer time spans of the simulation, however the decreases almost stops beyond 10 
years of simulation time span. The second pattern, and a pleasant one, is that the drop in the performance 
score for higher number of parallelism (threads) is small, and getting smaller for larger simulations. 

Looking at each case for smaller catchments (2 and 6 subareas), the pattern of evolutions with each factor is 
less clear, in spite of a measurement protocol that uses 10 replicates to reduce noise. While not a surprise, we 
do not have yet an explanation as to the behavior. We do observe that for a 2 subareas system, the simulation 
length has no impact on the performance for a single thread run, whereas moving to multiple does decrease 
performance (as expected) but without a clear pattern for how simulation length impacts performance, for a 
given number of threads. 

We measure that a model with 30 subareas requires ~100 milliseconds for one simulation year, at an hourly 
time step, using AWBM and linear Muskingum routing scheme. In practice, given the full support in 
SWIFT2 for parallel model computations, this performance is more than adequate for the calibration needs 
we have had so far and the ones we foresee. Projected runtimes for ensemble forecasts are also expected to be 
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adequate, and if not the bottleneck is more likely to be input and output of data on disk than raw 
computational speed. 

We intuit that the main approach to improve scalability with respect to numbers of subareas and simulation 
length is a vectorization of the code. One way to describe it is that we swap the order of the time and 
geolocation dimensions in how the time series data is stored in memory. This change is provisioned for, but 
not a priority. Note also this change may be at the detriment of scalability with multi-threading, though an 
overall improvement would be expected still. 

4. POTENTIAL AND CONCLUSION 

SWIFT2 is used by project members for core research purposes in calibration and simulation mode. 
Retrospective ensemble forecasting and error correction modeling capabilities are currently being ported 
from experimental R code to SWIFT2 in C++, for wider use and transition to the Bureau. While there will be 
some changes in the technology stack and ongoing incremental improvement to these features, we do not 
anticipate a need for major changes. The Bureau of Meteorology is implementing an interoperability layer to 
access SWIFT2 from the Python language. There is further potential for reuse of SWIFT2 for modelling 
needs that are beyond the scope of the current project, though current efforts are aimed at tying together and 
operationalizing the features for use by team members for research, then operational short term streamflow 
forecasting purpose. 

Computational requirements were a strong incentive, though not exclusive, to choose C++ as a language for 
the core of SWIFT2. Most users would not choose C++ as a language to express and manage their modeling 
workflows, however. The design of the SWIFT2 API has already been used to offer more convenient access 
to features from several high-level, interactive languages. One benefit is that the growing set of tools in these 
higher level languages and platforms fostering reproducible research can be used to manage modelling done 
with SWIFT2. This calls for further enhancements to the SWIFT2 API to interface with data provenance 
management systems, especially in a context of transition to operations. 
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