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Abstract: Hydro Tasmania manages 30 hydro-electric power stations fed from 45 major lakes across 
Tasmania, 13,500GL of water is managed annually. Forecasts play an important role in optimising the 
operation of the system, assisting in minimising spill, ensuring lakes operate at economic levels and that 
flood and environmental risks are managed.  These forecasts are generated by Hydro Tasmania's Dynamic 
Real-time Inflow Prediction (DRIP) system which produces 7 day forecasts for 61 locations across Tasmania, 
21 of which are then used by lake level prediction models.  

In 2014 Hydro Tasmania initiated a project to upgrade this system with the aim of improving forecasts and 
gaining a better understanding of the forecast uncertainty. The project involves: implementation of gridded 
rainfall forecasts, a GIS based model rebuild and auto calibration. For the forecast points, the system now 
provides an improved best estimate forecast and, based on analysis of the rainfall forecast uncertainty, a high 
and low forecast. 

This paper discusses how these forecasts are used to inform operational decisions, gives an overview of the 
model development process, operational implementation, and reflects on the strengths and weaknesses of the 
system. 
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1. BUSINESS DRIVERS FOR AN INFLOW FORECASTING SYSTEM 

Hydro Tasmania’s DRIP inflow forecasting serves two aims: firstly to provide power station operators with 
forecast inflows; and secondly to provide inflows for flood warning purposes.   

The operators’ use of the forecasts is driven by economics.  With foreknowledge of high inflows over the 
next seven days, operators are able to reduce spill, and hence increase over-all energy production, by 
tactically running power stations more in the period preceding higher inflows: this creates more “airspace” 
that can be used to store the subsequent high inflows.  Alternatively, during moderate-inflow periods, the 
forecast can give more confidence that spill can be avoided. This confidence means that airspace can be 
reduced and hence that the “head effect” can be maximized, i.e. with higher lake levels, more energy is 
produced from the same water.   

Another benefit during moderate-inflow periods is that the forecasts allow electricity production to be better 
timed into the market, and since market-price variations can be large, this can be of significant value.   

During periods where little rain is forecast the operators focus more on meeting demand, while retaining 
capacity for unexpected high market-prices and maintaining sufficient storage for potential dry spells beyond 
the rainfall-forecast horizon.  The models give an estimate of what inflows will support the storages, if any.  
However, it is fair to say that in these drier periods, when the inflows are on a recession curve, the models 
offer less additional value over-and-above simpler estimation methods.  As the inflow-forecasts only go out 
seven days they are not capable of informing the requirement to retain water for extended dry periods: Hydro 
Tasmania uses a different modelling approach for that purpose.   

The other key aim, to provide inflows for flood forecasting, allows Hydro Tasmania to fulfill its roles and 
responsibilities regarding managing high storage levels and high outflows.  In essence, the DRIP inflows feed 
into storage-models that provide forward estimates of lake level and outflow.  A set of alert-levels is included 
in the system, which raise alerts if the level or outflow forecasts exceed specified thresholds.   

2. OVERVIEW OF THE DRIP SYSTEM 

The Hydro Tasmania inflow forecasting system, DRIP, includes 22 rainfall-runoff models.  Each of these is 
a node-and-link model of sub-catchments and river-channels (although the sub-area water-balance is based 
on AWBM).  The models are run on a two-hourly cycle and use the currently available data from Hydro 
Tasmania’s TimeStudio database.  This includes: measured rainfalls and stream-flows (by Hydro Tasmania, 
these are available near-real-time); and forecast rainfall (by Bureau of Meteorology, BOM).   

Because the models utilise live stream-flow and rainfall measurements, and these are routed downstream, the 
forecast flow at the model outlet is partly comprised of the effects of those measurements.  However, 
experience has shown that their effects are very short-lived and that, for all but very short lead times, the 
forecast rainfall is the main determinant of forecast flow.  This is partly because of the steep terrain being 
modelled and the short distances to hydro lakes.  The net result is that, operationally, the largest source of 
uncertainty in the flow forecast is, by far, the forecast rainfall.   

3. MODEL DEVELOPMENT 

The following section discusses the approach taken to developing the models. Model development can be 
broken into three stages: model build, calibration time series derivation, and model calibration.  

3.1. Model Build 

To build such a large number of models a semi-automated approach was taken. A key benefit of this 
approach is that it ensures consistency between the models which has benefits for understanding performance 
and ease of maintenance. The procedure to develop the models was as follows: 

1. The catchment model schema was defined in ArcGIS. This included sub catchment breakup, 
junction nodes, rain gauge information and the routing network. 

2. The model schema was loaded into a model build interface. The build interface creates a generic 
model with all relevant rainfall runoff code, calibration code, rainfall inputs, model-health reporting 
and catchment rainfall calculations. 

3. The generic model was customised as necessary, for example additions such as forecast output 
links, any specific operating or network rules, correction points at stream gauge sites and additional 
calibration points were made. Figure 1 gives an indication of the level of complexity of these rules. 

2466



Robinson K, An overview of Hydro Tasmania’s dynamic real-time inflow prediction and flood forecasting 
system 

Figure 1. Schematic of the network that must be modelled, in addition to rainfall runoff modelling, to forecast inflows to 
Lake Plimsoll. 

3.2. Calibration time-series development 

Calibration time-series were derived to enable model calibration. Each catchment model was calibrated to 
either observed or derived flow at one or more points in the catchment. On a case by case basis practitioner 
judgment was used to assess which flow series was more appropriate. The decision on which flow series to 
use was based on factors such as: how well the catchment of the nearest stream gauge represented the 
forecast point catchment, and the quality of the derived flow record. The approach taken to deriving each of 
these record types is described below. 

Observed flow 

Hydro Tasmania has an ongoing quality control process in place for stream flow data which involves data 
managers reviewing and assigning quality codes to observations. This meant that quality codes could be used 
to exclude data that was not suitable for calibration, this included: estimated data, data that has been checked 
and found to be in error, poor data and data in error. 

Derived inflow 

Derived inflows are the natural pickup to a storage excluding discharge from storages upstream. Generally 
these were derived for the past 10 years (depending on data availability and quality) via the following 
process:  

1. Timeseries of most non-natural inflows and 
outflows to Hydro Tasmania’s storages are 
monitored and stored in TimeStudio. Applicable 
time series were identified by studying schematics 
of the scheme to identify all non-natural storage 
inflows and outflows. 

2. A model was developed which calculated natural 
pickup by the following equation: 

o Natural Inflow = Delta Storage – Non-
natural inflows + Outflows. 

The time series were calculated on an hourly time 
step.  Sections where one or more of the inputs had 
a data gap of more than 2 hours were removed from 
the record, 

3. A smoothing algorithm was applied (generally 6 
hourly moving aggregate with -3 hour time offset) 
to smooth out jumps in time series, 

4. The derived record was visually inspected and 
significant suspicious sections of the record were 
removed. This captured periods where incorrect 
instrument readings or non-monitored 
inflows/outflows to the storage affected the derived 
flow series. 

This process is sensitive to instrumentation accuracy and 
rating curves. It is more effective for storages with pickup flows that are large compared to pass-through 
flows and where the lake surface area was small compared to the catchment. For example, for the areas 

 

Figure 2. Highlights the elements that need to be 
accounted for when deriving natural inflow for some 

of the storages in the Pieman catchment. 
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shown in Figure 2, Lake Murchison’s inflow derivation was excellent and Mackintosh’s was useable.  
Conversely no useful inflow signal could be derived for Lake Roseberry because the smaller natural-inflow 
signal is lost amongst the high pass-through flows from Murchison and Mackintosh (Figure 3).  

 

Figure 3. Example hydrographs of inflows derived for storages in the 
Pieman catchment. 

3.3. Model calibration 

The model parameters which transform rainfall to inflows were calibrated using the calibration time series. 

The objective function used in calibration was Nash-Sutcliffe Efficiency which is a common method used to 
assess hydrologic model performance (WMO 2011). The coefficient was maximised over the calibration 
period, which generally extended for 10 years.  

Cross validation of the calibration performance over an independent period was not carried out. It was 
considered that the additional effort in doing this would not add significant benefit to understanding the 
model performance, particularly given that a relatively long period of record was used in calibration and the 
other uncertainties at play in the model forecast performance. 

The parameters of each model were calibrated using a global optimization algorithm called Shuffled 
Complex Evolution (SCE). An implementation of SCE developed by(Cohen 2012) in R for WISKI 
Modelling was utilised. The SCE algorithm applies various model parameter combinations to meet an 
objective function, in this case NSE. The models utilise Australian Water Balance Model 2 Tap (Parkyn & 
Wilson 1997), catchment and channel routing, and parameters for each of these functions were optimised in 
calibration. The configuration of the SCE algorithm was guided by (Duan et al. 1993).  

4. OPERATIONAL IMPLEMENTATION AND FORECAST PERFORMANCE 

In operation the models utilise a network of telemetered rainfall gauges, located within or near the catchment, 
to forecast inflows.  For all future time steps, those measured rainfalls are substituted with rainfall forecasts 
from the Bureau of Meteorology.   

The entire process is automated; from the collection of input data, running of forecast models, through to 
display of results.  This automated process is triggered by Hydstra TSM Scheduler, which activates routine 
tasks. Each model is operated at 2-hourly intervals and forecasts 7 days into the future.  A data management 
duty officer is on call 24 hours a day to support and maintain the scheduler machines. 

Naturally, there is a reduction in forecast accuracy with increasing lead-time. The most accurate forecasts are 
based on measured flow data, but this gives very little warning time as the flows are already in the river. The 
models also transmit measured rainfall inputs, which gives longer warning times but also additional 
uncertainty.  The longest warning times are achieved using forecast rainfall data as input to hydrologic 
models, but these forecasts are the most uncertain.  

The key sources of forecast uncertainty stem from (in decreasing order of importance): rainfall forecast error, 
calibrated model performance, uncertainties in observed data, methods of correction to observed streamflow, 
and to a lesser degree uncertainties in rating curves which transform observed parameters to flow. A 
description of the impact of each of these is provided in the following section. 
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4.1. Rainfall forecast performance 

The Bureau of Meteorology’s ADFD forecasts are used as rainfall forecast input to the models. The forecasts 
cover the entire Australian domain and are available in a gridded format, with approximately 3km resolution 
across Tasmania. The ADFD files are updated routinely at approximately 6am and 6pm local time and can 
also be updated at other intervals. Further information about the ADFD is available in (Bureau of 
Meteorology 2015).  

The two data grids used in this system are the 25% probability of exceedance (POE) daily rainfall and the 3-
hourly average rainfall amount. The daily forecast extends to 7 days into the future and the 3 hourly forecast 
extends 2 days into the future.  A 50% POE daily rainfall product is also available however an assessment of 
its performance demonstrated that it is less representative of observed rainfall than the 25% POE.  

Data comparisons between the ADFD forecasts and observed rainfall found that in general the forecasts 
contained biases. Therefore a process was established to bias correct the forecasts and calculate the 
uncertainty. This bias correction allows for local issues that aren’t adequately modelled by the forecast 
process, such as elevation and aspect, which can significantly alter observed rainfall at the gauge, and 
secondly, any inherent bias in the BoM forecasts.  

Forecast performance and bias correction functions were derived by analysing forecasts issued between 
March 2013 and October 2014. The observed vs forecast data was normalised on Box Cox space, a linear 
regression modelled fitted and the 50 % prediction interval calculated. An example for Gwendy Lake site is 
shown in Figure 4. 

 

Figure 4. Scatter plots of forecast performance at Gwendy Lake. These demonstrate the tendency for the 50% POE to 
under predict rainfall depths across all lead times and the increasing uncertainty of all forecasts with with lead time. 

In addition to the primary inflow forecast, high and low model models are also run. These aim to 
communicate the impact rainfall forecast uncertainty has on the model results. They are based on the upper 
and lower bounds of the day-1 rainfall forecast 50% prediction interval. 

4.2. Calibrated model performance 

Model calibration performance was assessed at all calibration and forecast points, by running the models with 
observed rainfall inputs. Nash-Sutcliffe Efficiency (NSE) was calculated across the whole period of record 
and the full range of flows. Models with a higher NSE will generally perform better than models with a lower 
NSE however, NSE does not capture volume biases, or the model’s ability to capture events within particular 
flow ranges or seasons.  

For the majority of the models NSE was calculated at the time step of interest, which is hourly, and ranged 
from 0.76 to 0.92 which is considered very good (Moriasi et al. 2007).  For some forecast points the model 
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performed poorly at an hourly time step - this typically occurred where there was a high uncertainty in the 
calibration time series. In these cases the reporting time step was increased until a satisfactory NSE was 
achieved. The aim of increasing the analysis interval was to check that, for longer intervals, the model would 
give a useful representation of the observed record, and hence indicated some skill at volume prediction over 
such intervals.  The plot below shows the model performance for Lake Murchison inflow which achieved an 
NSE of 0.92; this is one of the better performing models. 

 

 
Figure 5. Hydrographs with modelled inflows (blue) and observed flows (red) for Lake Murchison inflow for two annual 

maximum events with a) good model performance, b) poor model performance, and c) an entire year’s record at an 
hourly time step (2010). 

4.3. Observational uncertainties 

The forecasting process is automated from data collection through to forecast generation. Handling of 
observational uncertainties is therefore an important aspect of the DRIP system. For example, spikes or null 
periods in observed data will have a big impact on forecast results if not handled correctly. To minimise the 
likelihood and impact of erroneous observed data a comprehensive hydrographic maintenance program is in 
place along with complementary quality assurance and control processes. These processes automatically 
carryout tasks such as; clearing out unrealistic spikes in the observed data, infill missing values with 
supplementary sites, and notify personnel if data is not arriving in a timely manner.  

4.4. Other uncertainties 

Many of the models are calibrated to derived flow series whose accuracy is dependent on rating curves such 
as power station discharge, spillway discharge and lake level to volume curves. While these ratings are 
derived using best practice techniques they are generally not as accurate as established stream gauging 
techniques. These errors in some cases can result in the modelled inflows having systematic biases when 
compared to actual inflows. This situation is actually preferable as the modelled results are fed through 
downstream systems which use the same rating curves to plan system operation, this means that the errors 
balance out.  
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In summary, forecast uncertainty is variable depending on all of the above. If there is no rain then model 
uncertainty is the biggest factor but generally the models are most heavily relied upon for 1-2 day planning 
when rain is on the horizon - in this space their results are most dependent on the rainfall forecast. 

5. STRENGTHS AND WEAKNESSES OF THE SYSTEM 

This paper has provided an overview of Hydro Tasmania’s inflow forecasting system. A wide range of 
techniques have been adopted to develop and implement the system, some of them more successful than 
others.  

Adopting a semi-automated approach to model development and calibration has ensured the models have a 
consistent coding structure. This approach increased development productivity and the system is now easier 
to support than if the models were developed individually. Having the same calibration metric means that all 
models have similar strengths and weaknesses at modelling the inflow hydrograph, this makes it easier for 
users to understand how well the models perform under different conditions. 

The approach to developing calibration time-series was most successful for storages with relatively small 
surface area to catchment ratios, and with a large local pickup compared to pass through flows. 

The entirely automated nature of the system has been very successful. Modern day observation and telemetry 
techniques have proved very reliable. This combined with auto QAQC algorithms and model scheduling 
systems means that failure-to-issue, and critically erroneous forecasts, are virtually non-existent. 

Handling and communication of model uncertainty is the system’s biggest weakness. The biggest source of 
uncertainty comes from the rainfall forecasts and the current approach to handling this does not account for 
the increasing uncertainty with lead time or variable uncertainty associated with forecasting a particular 
weather system type. 
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