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Abstract: A river model is a semi-distributed hydrological model and it includes many processes such as 
flow routing, irrigation diversion, overbank flow, ground water interaction for simulating flows a river system 
for water resources planning and management. A number of calibration parameters are introduced in such 
models to represent various processes using simplified mathematical equations. Traditionally, a river model is 
calibrated using a reach-by-reach calibration approach starting from the top of the system cascading down to 
the end of the system. While the reach-by-reach approach is suitable for obtaining optimum model performance 
at a single river reach with high quality observed data, it does have the limitation of error propagation from 
upstream to downstream reaches if poor quality data are used in the calibration. A system-wide calibration 
approach has recently been developed for river system modelling in large river basins. Comparing with 
traditional reach-by-reach calibration, this new method optimises parameters of all river reaches within a region 
simultaneously using a weighted global objective function. The results of its application of this new approach 
in the Murray-Darling basin, Australia have shown its potential to overcome over-fitting and improve fitness 
of each individual gauge. However, due to the system-wide optimization of multiple reach parameters in a 
region, the search space and computational time required for system calibration increase exponentially with 
the increase of number of parameters. This limits the number of parameters that can be optimised and thus, the 
size of the region. To potentially overcome this limitation, a parallel computing enabled shuffled complex 
evolution (SCE) optimisation tool has been developed. A series of comparison studies have been conducted to 
evaluate the performance of this approach over normal SCE. These are: 1) comparison of computation time 
and performance for the same number of parameters; 2) comparison of performance with the same computation 
time and the same number of parameters and 3) comparison of the maximum number of parameters that can 
be optimised and performance within the same computation time. The results show that the run time with the 
new approach is about 25% of those with the normal SCE and its efficiency increases with increased number 
of calibration parameters.  
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1. INTRODUCTION 

A river model is a semi-distributed hydrological model designed for simulating flows in regulated and un-
regulated river systems and is widely used by the state and federal water agencies across Australia for water 
resource assessment, planning and policy making.  A regulated river system model includes many processes 
such as flow routing, irrigation diversion, overbank flow, ground water interaction. Various river models have 
been developed and used by different agencies for water resource assessment, planning and policy making 
(Welsh et al., 2013). One of such river models is the Australian Water Resource Assessment (AWRA) River 
model (AWRA-R), which has been recently developed by CSIRO in alliance with the Australian Bureau of 
Meteorology (BoM). The core objective of the AWRA-R model is to simulate various fluxes and stores 
associated with a river system to enable BoM to produce national water accounts.   

In a river system model, a number of calibration parameters are introduced in the model to represent various 
processes using simplified mathematical equations. For example, AWRA-R model includes 8 parameters. 
Calibration of such model parameters is a critical step to enable a river system model to simulate the behavior 
of a real world system as close to the observation as possible. However, such calibration of a river model with 
a large number of calibration parameters is computationally intensive. Therefore, a reach-by-reach calibration 
is typically used to calibrate most of the river system models, where Each reach or gauge in a river system is 
calibrated separately in a cascading manner from upstream to downstream reaches (Lerat et al., 2013). In such 
a way, only parameters within the same reach are calibrated at a time. In this approach, calibration errors, i.e. 
over-fitting to poor gauge data, propagate to downstream. In turn, it introduces water balance error and reduces 
goodness of fit at downstream gauges (Hughes et al., 2014a). To overcome this problem, Hughes et al. (2014b 
and 2015) proposed a system-wide calibration approach, in which all reaches or gauges within a modelling 
domain are calibrated simultaneously using a weighted system objective function for all stream flow gauges. 
Weight is assigned to each gauge in the system based on its magnitude and quality of available data. Its 
application to Murrumbidgee catchment (Hughes et al. 2014b and 2015) showed that the system calibration 
approach provided an overall improved goodness-of-fit by reducing the propagation of calibration error from 
upstream to downstream. The shuffled complex evolution (SCE-UA) (Duan et al., 1992 and 1993), as a robust 
and efficient search algorithm, was used as the optimizer in the system calibration. By its nature of evolutionary 
algorithm, the computational time increases exponentially with increase of the number of calibrated 
parameters. This limits the system calibration to be applied into large regions.  

To overcome above limitation, a parallel computing enabled shuffled complex evolution (PCE-SCE) system 
calibration tool has been developed and implemented for system-wide calibration of AWRA-R model 
parameters for different regions/sub-regions within the Murray-Darling Basin (MDB). The results demonstrate 
that the PCE-SCE is more efficient than the SCE-UA, especially for calibrating a large number of parameters.  

This paper has introduced the new PCE-SCE tool and its application in the MDB. The SCE-UA is briefly 
introduced in the next section, followed by a detailed description of the proposed PCE-SCE. The results from 
a series experiments in the MDB are then presented and discussed. The final section presents the conclusions 
drawn from the study. 

2. THE SCE-UA 

The SCE-UA was originally developed at the University of Arizona (Duan et al. 1992 and 1993) in order to 
effectively and efficiently calibrate high dimensional conceptual rainfall-runoff models. This method is derived 
from genetic algorithm and integrates the best features of the new concept of complex shuffling and three 
existing techniques, including combination of probabilistic and deterministic strategies, clustering and 
competitive evolution (Holland 1975, 1983; Manetsch, 1990; Wang, 1991). In general, there are six steps in 
the SCE-UA: 

1. Generate initial population – if there is no prior knowledge, just use a uniform probability distribution to 
generate predefined number of solutions within the feasible solution space, then evaluate them against 
predefined objective function and calculate their fitness; 

2. Rank each individual solution – sort all solutions within the population in ascending order according to 
their fitness (assuming that the goal is to minimize the fitness); 

3. Partition into complexes – the generated solutions are partitioned into a number of complexes, each of 
which has the same size of solutions; 

4. Evolve each complex – each complex is evolved independently for a predefined number of times according 
to the competitive complex evolution algorithm, which is based on the simplex downhill search method 
(Nelder and Mead, 1965). A simplex or sub-complex is generated from the complex according to a 
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trapezoidal probability distribution. The simplex then evolves with the three types of evolutionary 
techniques: reflection, contraction and mutation. 

The worst solution of the simplex is first identified and reflected through the centroid of the simplex without 
the worst solution.  

a) If the new reflected solution is out of the feasible solution space, it will use mutation technique to 
randomly generate a new solution within the feasible solution space; 

b) If the new reflected solution is within the feasible solution space and better than the worst solution, it 
will replace the worst solution. Otherwise, a contraction step is taken by computing a solution halfway 
between the worst solution and the centroid of the simplex without the worst solution. If this new 
contraction solution is better than the worst solution, it will replace the worst solution. Otherwise a 
new solution is randomly generated by using mutation technique. 

The number of times to generate a simplex is predefined and the number of steps taken within the simplex is 
also predefined. 

5. Shuffle all complexes – combine all complexes together to a single population; 
6. Check convergence or stop criteria – if any of the predefined convergence criteria or stop criteria is 

satisfied, stop. Otherwise go to step 2. 

3. THE PCE-SCE 

It is obvious that the step 4 in the above 
algorithm is the core of SCE-UA and high 
computationally intensive. Fortunately, 
this step also shows its high independency 
that all complex is evolved totally 
independent from each other. This 
independency makes it to be natural to 
evolve each complex in parallel. The 
proposed PCE-SCE is designed by taking 
advantage of this independency to 
optimize computational efficiency by 
parallelizing step of SCE-UA. In this 
approach, the complexes are evolved in 
parallel, on different CPU cores instead of 
a single CPU core. After the population is 
partitioned to complexes, the complexes 
are sent to and evolved independently on 
different CPU cores. The evolved 
complexes are then sent back to the main 
CPU core where all complexes are 
shuffled into a single population. If 
convergence or stop criteria are not met, 
solutions are ranked, the population is 
partitioned into complexes again and a 
new loop starts. The brief algorithm of the 
PCE-SCE is shown in Figure 1. To 
demonstrate its performance and how it 
works, a series experiments are conducted in the MDB and described in the following section. 

4. EXPERIMENTS 

The PCE-SCE is implemented in R and tested on the CSIRO Accelerator Cluster Bragg that consists of 128 
Dual Xeon 8-core E5-2650 Compute Nodes (i.e. a total of 2048 compute cores) with 128 GB of RAM, 500 GB 
SATA storage and FDR10 InfiniBand interconnect. All river models in the MDB are calibrated by both the 
PCE-SCE and the SCE-UA with the same configuration. The performance and running time from each 
algorithm are then compared and analysed. 

Figure 1. Algorithm of the PCE-SCE. 
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4.1. AWRA-R model 

The river model AWRA-R in the Australian Water Resource Assessment (AWRA) modelling system is 
adopted as the modelling tool in this study. Like other river system models, AWRA-R model attempts to 
simulate natural hydrological process and human activities of water diversion infrastructures (e.g. dams, canal 
intakes, pumps, etc.) within a river reach. The AWRA-R is a node-link based model, where a river system is 
schematised into a simplified river network for routing flows along a river system at a daily time step (Welsh 
et al., 2013). The current version of the AWRA-R model (version 5.0) consists of 10 components (Dutta et al., 
2015): Streamflow routing, Local ungauged runoff, Storage contribution modelling, Irrigation modelling, 
Urban water use, Water use for stock and domestic, Rainfall to and evaporation from river, Anabranch flow, 
Floodplain inundation modelling, River and groundwater interaction modelling and Head-water catchment 
modelling. Figure  shows a conceptual diagram of a river reach (in a residual catchment) with different 
components of the model. In an AWRA-R simulation of a reach, all upstream inflows are routed first and then, 
local inflows are added and losses are subtracted to calculate the outflow at the end of the reach. The general 
form of water balance for a reach (with routed upstream flow) for AWRA-R v5.0 can be described as follows: 

 
Qୢ/ୱ෣ = (Q୳/ୱ)୰୭୳୲ + Q୰ + Qୱ − Qୢ + Q୧୰୰ − Q୳ − Qୱୢ + Q୮ − Qୣ − Qୟ − Q୤୮ + Q୤୮୰ 	−	Q୥୵ 

 

Where, Qୢ/ୱ෣: simulated flow at the downstream gauge (m3/sec), Q୳/ୱ: concurrent flow at the upstream gauges 
(including gauged tributaries) (m3/sec), (Q୳/ୱ)୰୭୳୲: upstream inflow following routing (m3/sec), Q୰	: runoff 
locally generated from the local ungauged catchment (m3/sec), Qୱ	: contribution from any storages including 
rainfall on storage area, evaporation from storage area and change in storage volume (m3/sec), Qୢ	: loss due to 
irrigation diversion (m3/sec), Q୧୰୰	: total return flow from irrigated area (m3/sec),	Q୳	: net loss due to urban 
diversion (m3/sec), Qsd : rural water use (other than irrigation) for stock and domestic (m3/sec), Q୮	: the flux 
to the river store due to rainfall (m3/sec), Qୣ	: the flux from the river due to evaporation (m3/sec), Qୟ: the flow 
diverted to anabranches (m3/sec), Q୤୮= overbank flow to floodplain (m3/sec), Q୤୮୰: return flow from floodplain 
(m3/sec),and  Q୥୵: the flux from river to groundwater (m3/sec). 

AWRA-R model has 8 calibration parameters for every modelled reach: Lag, K, x, OT, FR, M1, M2, SF (Dutta 
et al., 2015). The first three parameters (Lag, K, x) are associated flow routing from upstream to downstream 
using Muskingum routing scheme. Parameters OT (overbank flow threshold) and FR (floodplain return flow 
coefficient) are associated with overbank flow modelling component (Dutta et al., 2013). M1 and M2 are two 
parameters of MONOD function, which is used to constraint groundwater recharge estimate from a river reach 
(Dutta et al., 2015). The final parameter (SF) is a scaling factor used for scaling the ungauged runoff obtained 
from AWRA-L model. 

4.2. Study area 

The study area in this paper consists of 18 reporting regions (Figure 2. The conceptual diagram of AWRA-R 
reach.                Figure ) in the MDB basin as in the MDB sustainable yield project (CSIRO 2008). Due to the 
size, some regions are divided into two sub-regions. Therefore, in total there are 22 region/sub-regions, each 
of which is modeled by an AWRA-R model. 

5. MODEL CALIBRATION 

In the model calibration, all parameters are calibrated reach-by-reach first (Lerat et al, 2013), and then followed 
by a system-wide calibration for each region/sub-region in the MDB. The optimum parameter sets found in the 
reach-by-reach calibration are used as the initial parameter set in the system calibration. In the system 
calibration, 4 parameters related to reach losses and gains are selected from each reach. They are: ungauged 
inflow correction factor, flood plain return flow coefficient and GW loss (α and β). All selected parameters for 
all reaches within a region or sub-region are calibrated simultaneously by the PCE-SCE and the SCE-UA, 
respectively. 

The objective function used for each reach is a combination of daily Nash-Sutcliffe efficiency (Nash and 
Sutcliffe 1970) with root transformed values and a bias given by: 

ܨܱ = ൭1 + ∑൫ඥܳ௜௦ +	ඥܳ௜௢൯ଶ∑(ඥܳ௜௢ −	ඥܳ௢തതതതതത)ଶ൱ ∗ (1 + ቤ∑ܳ௜௦ −	∑ܳ௜௢∑ܳ௜௢ ቤ) 
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Where ܱܨ is the objective fitness, ܳ௦ is the simulated stream flow daily time series, ܳ௢ is the observed stream 

flow daily time series. The bias ฬ∑ொ೔ೞି	∑ொ೔೚∑ொ೔೚ ฬ is introduced in the objective function to ensure that the total 

modelled stream flow matches the total observed stream flow. The function is minimized in the calibration and 
the ܱܨ will be 1 if the simulated stream flow perfectly match the observed stream flow. The higher the ܱܨ, 
the poorer the fit. 

Figure 2. The conceptual diagram of AWRA-R reach.        Figure 3. Reporting regions in the MDB. 

The overall objective fitness of a region in the system calibration is a weighted sum of the objective fitness of 
all reaches within the region given by: ܱܨ௦௬௦ = 	෍ ௝ܹ ∗  ௝ܨܱ	
Where, ܱܨ௦௬௦ is the overall system objective fitness for a region/sub-region, ܱܨ௝ is the objective fitness of a 
gauge in the region/sub-region and ௝ܹ is the weight of a gauge. Given the importance of mean flow rate and 
length of observed record, the ௝ܹ is calculated as: ݓ௝ = 	 ∑ ܳ௜,௝௠௜ୀଵ∑ ∑ ܳ௜,௝௠௜ୀଵ௡௝ୀଵ  

Where, ݓ௝ is the weight for the gauge j, and ܳ௜,௝ is the observed stream flow for the gauge j on the day i. The 
sum of all gauge weights should be 1. 

6. RESULTS AND DISCUSSION

Each system calibration includes 5 replicates with different seeds and runs at a daily time-step from 1/1/1970 
to 30/06/2014. The total number of parameters calibrated in the system calibration varies from 8 (Moonie) to 
84 (Macquarie-Castlereagh Bottom sub-region) (see Figure 4).  

The overall system objective fitness ܱܨ௦௬௦	of the best solution for each region/sub-region found by the PCE-
SCE and SCE-UA is shown in Figure 4. Since search algorithm is the same, it is not surprised to see that the 
best ܱܨ௦௬௦	found by the PCE-SCE and the SCE-UA is much similar across all regions/sub-regions. However 
the run times used by the PCE-SCE are much reduced compared to the SCE-UA for all regions/sub-
regions as shown in Figure 5. Both figures also suggest that the run time and the number of parameters 
follow a power law. According to this relationship, the average running time used by the PCE-SCE is about 
25% of that by the SCE-UA if less than 50 parameters are calibrated. For calibrating more than 50 
parameters, the PCE-SCE saves even more time. The average running time is about 21% of that by the 
SCE-UA if 50 to 80 parameters are calibrated.  
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The run time for calibrating the same number of parameters varies between replicates for both cases. The 
variance increases with the increased number of parameters. Sometimes the running time of one replicate is 
more than double of another replicates. It indicates that the solution space is very rugged and the starting point 
is critical to the searching process in the SCE. If 5 days (120 hrs) is the maximum acceptable running time, the 
SCE-UA can only handle the model with less than 50 parameters while the PCE-SCE can handle up to 80 
parameters. This is the reason why 4 regions have to be divided into two sub-regions. 

Figure 5. Run time vs. number of parameters by the PCE-SCE (left) and the SCE-UA (right). 

7. CONCLUSION

This paper proposed a parallel computing enabled SCE optimizer, which has been used to calibrate AWRA-R 
river system model in 22 regions/sub-regions within the MDB. The run time of calibrating the same number 
of parameters with the same configurations is largely reduced by using the PCE-SCE when comparing with 
the SCE-UA (up to about 25%). The efficiency of PCE-SCE increases with increased number of calibration 
parameters. Within the same run time, a much better solution is found by the PCE-SCE than the SCE-UA. 
However, this study also shows some limitations of the PCE-SCE. For example, the search process is directly 
impacted by the starting point, especially for calibration of a large number of parameters. The running time 
and its variance between replicates becomes unacceptable when calibrating a large number of parameters, e.g. 
more than 80 parameters. There is a scope for further investigation to overcome that. 

Figure 4. ܱܨ௦௬௦ of the best solution found by the PCE-SCE and the SCE-UA. 
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