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Abstract: Timely and reliable flood forecasting is critical for flood warning delivery and emergency 
response. As core components of an operational forecasting system, hydrological models are typically 
calibrated using streamflow measurements to minimize parameter uncertainties. The rapid development of 
earth observation techniques provides opportunities to obtain soil moisture information. As catchment 
discharge is strongly related to soil moisture, there is a possibility to improve streamflow forecasts by using 
soil moisture measurements for model calibration. The use of soil moisture observations has attracted 
increasing attention, however, there have been a limited number of studies. 

This study aims to assess the impact of integrating soil moisture measurements for model calibration on the 
forecast skills of hydrological models. Experiments were implemented in the Adelong Creek (157 km2) and 
the Upper Kyeamba Creek (190 km2) catchments of the Murrumbidge Basin using a lumped rainfall-runoff 
model named GRKAL (modèle du Génie Rural Kal). Two calibration scenarios are performed: 1) a 
traditional streamflow-only-calibration; 2) a joint-calibration using both streamflow and in-situ soil moisture 
measurements. Outcomes are evaluated in a hind-casting mode for both a calibration and independent 
validation period. 

Results show that, for the Adelong catchment, the joint-calibration led to a slightly worse match between the 
simulated and observed streamflow with a Nash-Sutcliffe (NS) value of 0.8173, as compared to the 
streamflow-calibration scheme (achieved a NS value of 0.8443) alone in calibration period. During the 
validation period, the joint-calibration achieved a NS value of 0.7952, performing better than the streamflow-
calibration scheme which gives a NS value of 0.7586. This result indicates that although introducing the soil 
moisture measurements to the objective function lead to a sub-optimal match of simulated streamflow to the 
observed data during the calibration period, there exists the possibility that joint calibration potentially 
optimized the model parameters to be more realistic, resulting a more precise prediction in the validation 
period. However, for the Kyeamba catchment, the results tend to be worse: NS values derived from joint-
calibration was less than that obtained by streamflow-calibration in both calibration and validation period. 
This may relate to the unphysically based model structure, equal-weighted objective function, and various 
sources of uncertainties. 

In terms of the soil moisture prediction, it is consistent in both catchments that the joint-calibration illustrates 
a marginally better match to the observed value than the streamflow calibration during most of the study 
period.  

It is concluded that while the joint-calibration will typically lead to poorer streamflow forecast results during 
the calibration period, it could lead to a more robust result in the validation/forecasting period. As this was 
not consistently the case, more objective functions (such as unequal-weighted NS and a combination of 
several frequently-used objective functions) need to be investigated to identify the best calibration strategy 
for using soil moisture information. 
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1. INTRODUCTION 

Flood is threatening to human safety and causes damages to buildings and facilities. The effectiveness of 
preventing losses from floods mainly depends on the accuracy and precision of flood forecasts. Flood 
forecasting systems usually consist of several parts including model and database, post-processor, and alarm 
handling (Sene, 2008). Hydrologic models are the core component in the forecasting systems. Conceptual 
models, such as the PDM (Moore, 2007), the HBV model (Bergström and Singh, 1995), and the GR4J model 
(Perrin et al., 2003), are dominant in operational applications, due to their relatively robust forecasting skills 
compared with purely data-drive models and high efficiency compared with fully process-based models. The 
conceptual models typically require catchment-specific calibration to generate reliable forecasts. 
Traditionally, an objective function is defined for this purpose, being a numerical indication of the mismatch 
between the observed and simulated streamflow.  This objective function is then minimized using techniques 
such as the Shuffled Complex Evolution method developed at The University of Arizona (Duan et al., 1992) 
(SCE-UA), simulated annealing (Eglese, 1990), genetic algorithms (Wang, 1991), or Particle Swarm 
Optimization (Eberhart and Kennedy, 1995). 

Soil moisture is an important variable in the hydrologic cycle. In the study by Penna et al. (2011), it is noted 
that in wet condition, soil moisture acts as a clear threshold, above witch the generation of runoff is 
significantly increased. In recent years, the rapid development of earth observation satellites provides 
opportunities to obtain catchment-wide soil moisture information. These advanced soil moisture products 
provide a possibility to improve the current hydrological models by calibrating to both streamflow and soil 
moisture. Aubert et al. (2003) showed a significant improvement of streamflow simulation by using a joint 
calibration. More recently, Wanders et al. (2014) demonstrated that satellite soil moisture data does have 
positive impacts on the streamflow simulations for small catchments. However, the application of the newly 
developed soil moisture measurements in hydrologic models calibration is still under investigated. 

OzNet hydrological monitoring network provides successive observations of soil moisture and precipitation 
of several catchments in Australia since 2001. Antecedent studies on the Adelong Creek and the Kyeamba 
catchments has done by Shahrban et al. (2015). This paper aims to study the feasibility of introducing soil 
moisture observations into hydrological model calibration, and evaluate the impact of the joint-calibration, 
compared with the traditional practice of calibrating hydrologic models using streamflow alone. A two-layer 
soil moisture based hydrological model (GRKAL) is used for this study, but only the soil moisture 
measurements of the entire zoot-zone layer are used for model calibration.  

2. METHODOLOGY 

2.1. Study area and data 

Study area 
To monitor long-term soil moisture, as well as meteorological dynamics, the OzNet hydrological monitoring 
network (www.oznet.org.au) (Smith et al., 2012) has been established in Murrumbidgee River basin. The 
Adelong Creek and the Upper Kyeamba Creek (Figure. 1) located in the southeast of the Murrumbidgee 
River basin are investigated. The Murrumbidgee basin is located in New South Wales in Australia, covering 
a total area of 84,000 km2, with the elevation ranging from more than 2,200 m to less than 50 m. The area of 
Adelong and upper Kyeamba catchments are 157 km2 and 190 km2, respectively. 

Data 
Data used in this study include precipitation, potential evapotranspiration, stream discharge, and soil 
moisture. Precipitation and ground soil moisture measurements are obtained from the OzNet hydrological 
monitoring network. Five monitoring sites in the Adelong Creek Catchment and 5 sites in the upper 
Kyeamba Creek Catchment (out of 14 sites in the whole Kyeamba Creek Catchment) are used from February 
2007 to December 2012. Precipitation and soil moisture data are averaged from 30 min time steps to hourly 
values to produce hourly forecasts. OzNet precipitation data are used only in the calibration period 
(Feb/2007-Dec/2010) within which the first 11 months (year 2007) are used as model spin-up. For the 
validation period (Jan/2011-Dec/2013), precipitation from Bureau of Meteorology (BoM) are used to make it 
to be consistent with operational forecasting scenarios (Shahrban et al., 2015). OzNet soil moisture data are 
adopted throughout the experiment duration. The hourly gauged stream discharge for the entire period (2007-
2012) is obtained from New South Wales Office of Water.  
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Figure. 1 Map of the catchments 

2.2. GRKAL model 

The GRKAL (Francois et al., 2003) model is a lumped conceptual rainfall-runoff model based on the GR4 
(Perrin et al., 2003) and GRHUM (Loumagne et al., 1996) models. GR4 model has proven successful 
applying to 120 catchments in France and is accuracy when applied to small catchments (Loumagne et al., 
1996). Different from GR4, the soil moisture of GRKAL model is parameterized as a two layer system — a 
surface layer and a deep layer. The conceptual structure of GRKAL model is shown in Figure. 2.  

The net rainfall ୬ܲ entering the model is divided into two parts after passing an interception store: the part ୱܲ, 
which are then drained by means of evapotranspiration and percolation through a two-layer soil water 
storage, and the remaining part ୬ܲ − ୱܲ is the surface runoff, which then needs to be routed and which can 
also re-infiltrate. The percolation, converging with the re-infiltrated part of the surface runoff, is routed by 
two unit hydrographs, UH1 and UH2, which are allocated 90% and 10%, respectively. The flow component 
routed by UH1 then fills a nonlinear routing store. Both components are subject to a groundwater exchange 
term F. Finally the outflow Q is the sum of the drainage of the routing store ܳ୰ and the direct component	ܳୢ. 

Eight parameters need to be calibrated: the maximum water capacity of surface (wsat) and deep (wpmax) soil 
layers; the coefficients (ߙଵ  and ߙଶ ) determining the partition of net rainfall; diffusivity coefficient (d) 
between two layers; the maximum capacity of the roughing store (wr); the coefficient (x) determining the 
groundwater exchanges; and time base (L) of the unit hydrographs.  

2.3. Calibration and validation 

The calibration experiments were carried out for the period from Feb/2007-Dec/2010 in two scenarios: 1) 
calibration using streamflow only and 2) joint-calibration using both streamflow and soil moisture 
measurements. For the streamflow-calibration scheme, the objective function to minimize the errors between 
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observed and simulated data is the Nash-Sutcliffe model efficiency coefficient 	(NS) , which can be 
mathematically expressed as 

NS = 1 − ∑ ൫(Q୭ୠୱ,୧ − Qୱ୧୫,୧൯ଶ୬୧ୀଵ∑ ൫(Q୭ୠୱ,୧ − Qഥ୭ୠୱ,୧൯ଶ୬୧ୀଵ 																				(1) 
The range of Nash-Sutcliffe coefficient is (−∞	,1], where 1 
means a perfect match of the simulated data to the observed 
data.  A value of 0 indicates a knowledge-less model, that 
performs equally well as a time series equal to the mean of 
the observations at each time step. For the joint-calibration 
scheme, an equal-weighted NS was used as the objective 
function such that 

NS = ∑ ൫Q୭ୠୱ,୧ − Qୱ୧୫,୧൯ଶ୬୧ୀଵ∑ ൫Q୭ୠୱ,୧ − Qഥ୭ୠୱ,୧൯ଶ୬୧ୀଵ + ∑ ൫SM୭ୠୱ,୧ − SMୱ୧୫,୧൯ଶ୬୧ୀଵ∑ ൫SM୭ୠୱ,୧ − SMതതതത୭ୠୱ,୧൯ଶ୬୧ୀଵ  

																																																																																		(2) 
where SMobs and SMsim are soil wetness (%) of the entire 
zoot-zone layer.  

In the validation stage (Jan/2011-Dec/2013), the model is 
applied with the parameters derived from the calibration. 
The simulated streamflow of both scenarios are evaluated by 
the Nash-Sutcliffe using equation (1).  

3. RESULTS 

3.1. Outcomes A: Streamflow 

The observed and simulated streamflow of each scenario are 
illustrated in Figure. 3 and Figure. 4 for both the calibration 
and validation periods. It can be inferred from Figure. 3 that, 
for the Adelong catchment, the joint-calibration results in a 
slightly worse match of the peak flows than the streamflow-
only calibration in the calibration period, whilst the 
performance is slightly better during the validation period. 

Table 1 lists the calculated Nash-Sutcliffe values for both the streamflow-only and joint calibrations during 
the calibration and validation periods. It is shown that the joint-calibration for Adelong catchment displays a 
lower NS value during the calibration period, but a higher NS value during the validation period.  However, 
the NS values in joint-calibration case are consistently lower in both calibration and validation periods.  

Table 1 Nash-Sutcliffe values for Adelong catchment 

 
Adelong Catchment Kyeamba Catchment 

Cal. Val. Cal. Val. 

Q-cal. 0.8443 0.7586 0.6936 0.6925 

joint-cal. 0.8173 0.7952 0.6701 0.6402 

 

3.2. Outcomes B: Soil moisture 

It is physically intuitive that the calibration involving soil moisture observations would improve the 
corresponding soil moisture simulation result. This is proven by Figure. 5 and Figure. 6, in which the entire 
zoot-zone soil wetness (0-1 m) simulations of the two scenarios are compared to the observations. It can be 
clearly seen that joint-calibration illustrates a better match to the observed data during most of the study 
period. 

Figure. 2 Structure of the GRKAL model 
(Francois et al., 2003). 
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Figure. 3 Simulated and observed streamflow for the Adelong catchment. 

 

Figure. 4 Simulated and observed streamflow for the Kyeamba catchment. 

 

3.3. Discussion 

The difference in model performance is a result of the different parameter sets obtained by introducing soil 
moisture in the calibration or not. It is obvious that including soil moisture information can marginally 
improve soil moisture simulation so as to impact future streamflow forecasts. This impact on streamflow 
forecasts can be positive as seen from the results in Adelong Creek. This can be explained that although the 
errors are not minimal in streamflow in the joint-calibration scenario, it may give a better parameter set 

2093



Yuxi Zhang et al., Towards operational hydrological model calibration using streamflow and soil moisture 
measurements 

which better captures the water propagation and flow dynamics. The streamflow forecasts can potentially 
benefit from more realistic parameter sets and better characterized initial soil moisture conditions. However, 
although this phenomenon is logical in theory, it is not always consistent in practice, as opposite results are 
obtained in Kyeamba catchment. This indicates that soil moisture information can help to improve model 
performance, only when the simulation and observation are properly combined, and the model can properly 
represent the relationship between soil moisture and runoff generation/infiltration process. Further 
investments on the choice of objective function (e.g. unequal-weighted NS) can be done in the future to use 
soil moisture information in an optimal way. 

  

Figure. 5 Simulated and observed soil moisture of the Adelong catchment. 

 

Figure. 6 Simulated and observed soil moisture of the Kyeamba catchment. 
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4. CONCLUSTIONS 

Two calibration scenarios, streamflow-only calibration and joint streamflow-soil moisture calibration, were 
applied to the Adelong and Kyeamba catchments, leading to different model performances. The simulated 
streamflow and soil moisture are compared to observations and are quantitatively evaluated using the Nash-
Sutcliffe coefficient. 

It is concluded that although the joint-calibration will typically lead to a lower Nash-Sutcliffe value during 
the calibration period, it has the possibility to result in a more robust result in the validation/forecasting 
period. However, this potential is not consistent in practical applications and needs to be further investigated 
by incorporating different objective in order to identify the best calibration strategy when using soil moisture 
information for flood forecasting models. 
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