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Abstract: A new finite volume algorithm to solve the two dimensional shallow water equations on an un-
structured triangular mesh has been implemented in the open source ANUGA software, which is jointly devel-
oped by the Australian National University and Geoscience Australia. The algorithm supports discontinuous-
elevation, or ‘jumps’ in the bed profile between neighbouring cells. This has a number of benefits compared
with previously implemented continuous-elevation approaches. Firstly it can preserve lake-at-rest type sta-
tionary states with wet-dry fronts without using any mesh porosity type treatment (mesh porosity treatments
allow the bed to absorb some water as though it were porous). It can also simulate very shallow frictionally
dominated flow down sloping topography, as typically occurs in direct-rainfall flood models. In the latter situ-
ation, mesh porosity type treatments lead to artificial storage of mass in cells and associated mass conservation
issues, whereas continuous-elevation approaches with good performance on shallow frictionally dominated
flows tend to have difficulties preserving stationary states near wet-dry fronts. The discontinuous-elevation
approach shows good performance in both situations, and mass is conserved to a very high degree, consistent
with floating point error.

A further benefit of the discontinuous-elevation approach, when combined with an unstructured mesh, is that
the model can sharply resolve rapid changes in the topography associated with e.g. narrow prismatic drainage
channels, or buildings, without the computational expense of a very fine mesh. The boundaries between such
features can be embedded in the mesh using break-lines, and the user can optionally specify that different
elevation datasets are used to set the elevation within different parts of the mesh (e.g. often it is convenient to
use a raster digital elevation model in terrestrial areas, and surveyed channel bed points in rivers).

The discontinuous-elevation approach also supports a simple and computationally efficient treatment of river
walls. These are arbitrarily narrow walls between cells, higher than the topography on either side, where
the flow is controlled by a weir equation and optionally transitions back to the shallow water solution for
sufficiently submerged flows. This allows modelling of levees or lateral weirs which are much finer than the
mesh size.

A number of benchmark tests are presented illustrating these features of the algorithm. All these features
of the model can be run in serial or parallel, on clusters or shared memory machines, with good efficiency
improvements on 10s-100s of cores depending on the number of mesh triangles and other case-specific details.

Keywords: Shallow water equations, finite volume methods, discontinuous-elevation, flood modelling

21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 
www.mssanz.org.au/modsim2015

2130



G. Davies and S. Roberts, Open source flood simulation with a 2D discontinuous-elevation hydrodynamic ...

1 INTRODUCTION

Numerical solutions of the two-dimensional shallow water equations are widely used to simulate inundation
caused by floods and tsunamis over realistic topography (e.g. Schubert et al., 2008; Jakeman et al., 2010;
Costabile et al., 2013). The numerical quality of these inundation predictions is important, as they provide key
hazard information to inform disaster risk estimates and risk reduction measures (e.g. de Bruijn et al., 2014;
McLuckie et al., 2014). Accurate numerical solution of the shallow water equations is not straightforward, with
numerical schemes often having difficulties with mass conservation, simulation of supercritical flow without
ad-hoc modification of the flow equations, and maintaining numerical stability (especially at wet-dry fronts,
over steep slopes, and for very shallow flows) (e.g. de Almeida et al., 2012; ARR, 2012; Smith and Wasko,
2012; Costabile et al., 2013; Sampson et al., 2013).

Finite volume schemes have become increasingly popular for the solution of the shallow-water equations
because they are well adapted to simulate both subcritical and supercritical flows, and their flux-based for-
mulation naturally promotes momentum and mass conservation (ARR, 2012; Kesserwania and Wang, 2014).
ANUGA is an open source finite volume shallow water equations solver, and various versions of the soft-
ware have been used for flood and tsunami simulation (Nielsen et al., 2005; Jakeman et al., 2010; Mungkasi
et al., 2013; Mungkasi and Roberts, 2013). ANUGA can run in parallel on distributed or shared memory
machines, and can efficiently use hundreds of cores on sufficiently large problems (Roberts et al., 2013).
Here we describe a new finite volume scheme which has been implemented in ANUGA and is based on a
discontinuous-elevation approach. Compared with previous solvers implemented in ANUGA it has the fol-
lowing advantages: 1) It preserves stationary states even at complex wet-dry fronts, and the same algorithm
can model very shallow flow down coarsely resolved sloping topography; 2) It allows sharp changes in the
topography to be represented using a relatively coarse mesh; 3) It admits a simple extension for modelling
‘riverwalls’ (thin weirs between two cells). Several examples illustrating these strengths of the new scheme
are reported.

2 EQUATIONS AND NUMERICAL METHOD

2.1 Finite-volume discretization of the shallow water equations

The shallow water equations are:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= Rz +Rf (1)

where:

U = [w, uh, vh]; F = [uh, u2h+ gh2/2, uvh]; G = [vh, uvh, v2h+ gh2/2]

Rz = [0,−gh∂z
∂x
,−gh∂z

∂y
]; Rf = [0,−ghSfx,−ghSfy] (2)

and x, y are spatial coordinates (m), t is time (s), w(x, y, t) is the stage (water surface elevation) with respect
to an arbitrary vertical datum (m), h(x, y, t) is the flow depth (m),

(
u(x, y, t), v(x, y, t)

)
are the x and y

components of the flow velocity vector (m/s), z(x, y) is the bed elevation (m), and g is a constant gravitational
accelleration (9.81 m/s2). Clearly w = h + z. The friction slope terms Sfx and Sfy drive momentum losses
due to friction, and are modelled with standard Manning friction closures:

Sfx = η2
u
√
u2 + v2

h4/3
; Sfy = η2

v
√
u2 + v2

h4/3
(3)

where η(x, y) is a Manning’s roughness coefficient which is related to the sub-mesh scale roughness of the
land surface and the flow.

To numerically solve Equation 1 we discretize the model domain with an unstructured triangular mesh. At any
instant in time the real flow state inside the i‘th mesh triangle4i may vary spatially, but the average flow state
can be represented by a three-dimensional vector:

Ui = [wi, (uh)i, (vh)i] :=
1

Ai

∫∫
4i

U dxdy (4)
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where Ai is the area of4i.

Integrating Equation 1 over 4i and applying the divergence theorem to the spatial derivative terms leads to a
system of ordinary differential equations for the Ui:

dUi

dt
+

1

Ai

3∑
j=1

lij(Fijn
x
ij +Gijn

y
ij) = Rz

i +Rf
i (5)

where the use of an ij subscript denotes a quantity on the j’th edge of4i, j ∈ (1, 2, 3), lij is the edge length,
Fij,Gij are the spatially averaged values of F and G on the edge, nij = (nxij , n

y
ij) is the outward unit normal

vector to the edge, and Rz
i ,R

f
i are the spatially averaged values of Rz and Rf respectively on4i. Although

there are no numerical approximations in Equation 5 its solution requires evaluation of the flux terms Fij and
Gij, and the source terms Rz

i and Rf
i . In practice these must be approximated using the known Ui.

2.2 Approximation of the flux and source terms

To compute the flux and source terms we require values of flow variables along the edge of every triangle.
These are computed using a discontinuous piecewise linear interpolation, e.g. for the edge stage wij :

wij = wi + r∇wi · (xij − xi) (6)

where xij = (xij , yij) is the edge midpoint coordinate, xi = (xi, yi) is the centroid coordinate, ∇wi is equal
to the gradient of the plane containing the centroid stages of the three triangles neighbouring4i, and r ∈ [0, 1]
is a slope limiter computed to prevent any edge stage from overshooting the centroid stages in the triangle and
its neighbours (e.g. Kesserwania and Wang, 2014).

Interpolations similar to Equation 6 are applied to estimate the edge stagewij , depth hij , and velocities uij , vij .
The edge bed elevation is then zij = wij−hij . At each edge every variable attains two distinct values because
the interpolation is discontinuous, and hence the elevation is also discontinuous at the triangle edges (Audusse
et al., 2004).

To compute the flux on a given edge, consider a rotated coordinate system where the x axis is directed along
the outward normal to the edge as viewed from4i. With this coordinate system, letwij , hij , u

′
ij , v

′
ij , zij be the

edge variables extrapolated from one neighbouring triangle, andwnm, hnm, u
′
nm, v

′
nm, znm the corresponding

variables extrapolated from the other triangle sharing the edge. The prime superscript is used when the new
coordinate system has changed the value of the variable. Following Audusse et al. (2004), define:

z∗ = max(zij , znm); h∗ij = max(hij − z∗ + zij , 0); h∗nm = max(hnm − z∗ + znm, 0) (7)

The flux through the edge as evaluated naı̈vely from quantities on the ij edge in the rotated coordinate system
is:

H′ij = [u′ijh
∗
ij , (u

′
ij)

2h∗ij +
g

2
(h∗ij)

2, u′ijv
′
ijh
∗
ij ] (8)

and we similarly define H′nm using the quantities on the nm edge. These are combined to produce a single
edge flux H′ij with a HLL Riemann solver:

H′ij =
s+H′ij − s−H′nm + s+s−(U

′
nm −U′ij)

s+ − s−
(9)

where:

s+ = max
(
u′ij +

√
gh∗ij , u

′
nm +

√
gh∗nm, 0.

)
; s− = min

(
u′ij −

√
gh∗ij , u

′
nm −

√
gh∗nm, 0.

)
U′ij = [wij , u

′
ijh
∗
ij , v

′
ijh
∗
ij ]; U′nm = [wnm, u

′
nmh

∗
nm, v

′
nmh

∗
nm] (10)

The flux H′ij is rotated back to the x, y coordinate system and used in place of the term (Fijn
x
ij + Gijn

y
ij)

in Equation 5. Note the rotated H′ij flux will be identical to the rotated H′nm flux, so the flux computations
conserve mass and momentum.
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The friction related source term Rf
i in Equation 5 is approximated using pointwise values of Ui at centroids.

The bed slope source term Rz
i in Equation 5 is approximated to be well balanced as (Audusse et al., 2004):

Rz
i =

g

2Ai

3∑
j=1

lij
(
(h∗ij)

2 − h2ij − (hij + hi)(zij − zi)
)

(11)

2.3 Time integration and velocity clipping

Equation 5 is integrated in time using an explicit 2nd order Runge-Kutta scheme. Variations of the algo-
rithm have also been successfully implemented using first order explicit euler time-stepping, but they are not
considered further herein. The timestep is chosen based on the CFL condition as described in Roberts et al.
(2013).

The flow depth in every 4i is checked in every timestep. If it is less than 1 × 10−5m then the cell’s depth
integrated velocities (uh)i, (vh)i are set to zero. Without this we find computations may produce very high
velocities in extremely shallow flows, as has been widely reported elsewhere (e.g. Nikolos and Delis, 2009;
Costabile et al., 2013).

3 PROPERTIES OF THE DISCONTINUOUS-ELEVATION SCHEME

3.1 Well balancing

The scheme described above is well balanced (i.e. it can preserve stationary states), even over complex topog-
raphy with wet-dry fronts. Figure 1 gives an example of complex topography with a stationary wet-dry front,
where Manning’s η ranges from 0.02 to 0.04 depending on land-use (Smith and Wasko, 2012). To demonstrate
the scheme’s well-balanced nature we computed the flow in this scenario for 100 s (∼ 3000 timesteps). An-
alytically the flow should be stationary. Consistent with this the computed instantaneous flow speed remains
effectively zero throughout the simulation (< 2× 10−12 m/s). Early ANUGA algorithms could not preserve
this stationary state over complex topography (Davies, 2011). The latter paper proposed a porosity-type flow
algorithm which can solve this problem, but cannot successfully model shallow flow down coarsely resolved
sloping topography (Section 3.2).

To test the discontinuous-elevation scheme’s robustness when water is flowing off the buildings (as would
happen in a direct-rainfall simulation with embedded buildings), at t = 10 s we added 1 cm of water to
buildings within the initially wet areas, and computed the evolution of the flow for 3000 s. Considering that
flow off building tops can generate instabilities in some numerical schemes (ARR, 2012; Sampson et al., 2013),
we check: 1) whether instabilities occur as water flows off the buildings into the initially stationary pond, and;
2) whether the model returns to a stationary state. The computed instantaneous maximum flow speed peaks
at 0.4 m/s early in the simulation and then steadily decays with no obvious instabilities (Figure 1). It reaches
< 2 × 10−4 m/s after 3000 s, consistent with a return to stationary state. The water volume change was
4× 10−11 m3, indicating good mass conservation as compared with the ideal value of zero.

3.2 Coarsely resolved sheet flow

Direct rainfall flood models will almost inevitably include some upper-catchment areas exhibiting friction
dominated sheet flow. Often the model is coarsely resolved so that the elevation change in a single cell is
large compared to the flow depth. This can cause problems for some numerical methods. For example, if
the edge depth is computed by subtracting the real edge bed elevation from an edge stage computed with first
order extrapolation, then it will be far too large and result in unrealistic fluxes. Also, porosity-type wetting and
drying approaches (Davies, 2011) will incorrectly absorb a potentially large part of the discharge. Similarly
some numerical methods employ values of the threshold depth for setting velocities to zero that are much larger
than the value used here (1×10−5 m), which means that significant amounts of water may be artificially stored
(ARR, 2012).

To examine the current scheme’s performance for coarsely resolved sheet flow, we simulate flow down a
uniformly sloping plane (x length 400 m, y length 100 m) with gradient of -1/10 in the x direction and a
Manning coefficient of 0.03. The mesh triangles have an area of 100 m2 (side lengths ranging from 14-20
m) so the elevation within a single triangle drops ' 1.4 to 2 m. We impose a small discharge of 0.1 m3/s
uniformly along the upstream boundary (x = 0). The analytical solution may be computed assuming the
flow becomes steady and uniform (Sfx = − ∂z

∂x ) and leads to flow depths slightly below 4 mm which is much
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Figure 1. Left: Topography and initial condition for the well balancing test case. Blue areas are wet with a
constant stage, and beige areas are dry. Note the discontinuities in the elevation at buildings, which emerge
from the water. The buildings were produced by adding 3m to the topography inside polygons defining the
building-footprint. Right: Temporal evolution of instantaneous peak flow speed in the entire model domain
after a perturbation to the balanced state. 1 cm of water was added to all buildings in the wet region of the
figure, which then flows off the buildings into the ponded areas.

Figure 2. Numerical and analytical flow depth (left) and velocity (right) in the downstream direction for the
coarsely resolved sheet flow example. Centroid values for all triangles within 10m of the line y = 50 are
plotted. Flow is from left to right. Deviations from the analytical solution near the boundaries are explained in
the text.

less than the elevation range of the mesh triangles. Figure 2 shows the depth and velocity computed by the
model after 3000 s agrees well with the analytical solution away from the boundaries. Deviations occur at the
upstream boundary because the flow has not had time to reach a steady-uniform state, and at the downstream
boundary because a reflective boundary condition was imposed leading to water ponding (for visual clarity the
plot range excludes the high depths there), while the model is highly accurate in the steady-uniform region.

3.3 Sharp resolution of changes in topography

A key benefit of discontinuous-elevation is that it permits the sharp resolution of rapid changes in topography,
even with a coarse mesh. For example, Figure 3 shows a channel with rectangular cross-section defined sharply
using only 1-2 cells along the channel width. The mesh is constructed using ‘breaklines’ to define the channel
banks at a cross-channel distance of 10 m and 20 m (Figure 3). Breaklines are lines that mesh triangles cannot
cross, so each breakline is covered by triangle edges. Although this example has a particularly idealised
geometry (to facilitate analytical solution), irregular channel shapes can also be modelled straightforwardly
using irregular 2D breaklines. With continuous-elevation solvers it is impossible to represent such channels
with steep banks at coarse resolution. A fine mesh can be used to resolve the topography arbitrarily well in a
continuous-elevation solver, but this is not always feasible as the computational effort increases rapidly with
mesh refinement.

We compare the analytical solution for overbank flow with numerical solutions using a coarse mesh (10 m

2134



G. Davies and S. Roberts, Open source flood simulation with a 2D discontinuous-elevation hydrodynamic ...

Figure 3. Left: Coarse-mesh discontinuous-elevation representation of a prismatic channel (yellow triangles)
flanked by narrow floodplains (red triangles). Breaklines (bold black lines) separate the channel and the
floodplains. Velocity vectors are depicted as black arrows. The full channel is 1000 m long (not shown).
Right: The analytical stage and velocities over a cross-section with overbank flow are compared to those
computed with a coarse-mesh (∼ 1 triangle over the channel width) and a fine-mesh (∼ 6-8 triangles over the
channel width). The channel slope = 1/300, η = 0.03, and the discharge is 28.16 m3/s.

triangles with ' 1 triangle over the channel width) and a fine mesh (1.5 m triangles with ' 6-8 triangles
over the channel width) (Figure 3). Theoretically the latter requires around (10/1.5)3 ' 300 times more
computational effort than the former. Both numerical solutions exhibit numerical diffusion of momentum
around the banks, causing them to deviate from the analytical solution (Figure 3). Numerical diffusion tends
to decrease velocities in the channel, increase velocities on the floodplains, and produce higher overall channel
drag (Figure 3). However, both solutions give reasonably accurate depth predictions (errors of 6cm with
the coarse mesh and 2cm with the fine mesh). While it is typically preferable to use a fine mesh if the
computational effort is not excessive, for the discontinuous-elevation algorithm the coarse-mesh errors may be
practically acceptable in some field situations, considering that the unknown Manning’s roughness will have a
greater effect on the channel’s conveyance and will require calibration.

With a small modification, the discontinuous-elevation algorithm can be extended to allow ‘thin’ walls of
arbitrary height to be inserted on the edges between two mesh triangles. This allows riverwalls or levees
which are much finer than the mesh size to be represented in the model. To do this the variable z∗ (Equation 7)
is set equal to the wall height prior to the flux computation, which prevents any flow over the wall until it is
overtopped. Numerically, both mesh triangles behave as though their neighbour has the higher bed elevation.
If the wall is overtopped, the computed flux is re-scaled so that it agrees with the flux computed from a widely
used weir equation (Villemonte, 1947), with a transition back to the shallow water solution when the weir is
sufficiently submerged. We will report on tests of this approach in a future publication.

4 CONCLUSIONS

The ANUGA code (https://github.com/GeoscienceAustralia/anuga_core) includes about
30 validation tests covering analytical, experimental and realistic examples, which can be used to more thor-
oughly evaluate the performance of the above flow algorithm (termed ‘DE1’ in ANUGA). While it is not
possible to discuss all these tests herein, in our experience with these and other applications the above scheme
is quite robust and accurate compared with the continuous-elevation approaches implemented in ANUGA.
Particular advantages of the discontinuous-elevation approach include that: the scheme is well balanced even
at complex wet-dry fronts, while also being able to simulate frictionally dominated shallow flows over coarsely
resolved sloping topography; it can sharply resolve rapid changes in the topography with a relatively coarse
mesh; and it admits a straightforward extension for modelling riverwalls. The main limitation we are aware
of is in simulating frictionless wet-dry fronts, for which the algorithm tends to predict that drying fronts dry
more slowly than in analytical solutions. This behaviour has been reported for another finite-volume solver
using a similar discontinuous-elevation flux discretization (Kesserwania and Wang, 2014). We do not expect
this to be highly relevant for field applications, since very shallow flows over realistic topography will tend to
be frictionally dominated.
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