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Abstract: Surface hydrologic models are widely used for streamflow prediction, forecasting and for 
understanding hydrologic processes. They are also an important tool for contributing to the resolution of wider 
resource and environmental issues, providing information to support policies and decisions for water resource 
management. Precipitation is a key input to hydrologic models and is however also the major source of 
predictive uncertainty. Whilst station-based observed precipitation data can be adequate for hydrologic 
modelling in small catchments, they may not be sufficient for large catchments, in particular for large 
catchments with a mountainous terrain. Areal estimation of precipitation is a potential option to provide more 
precise precipitation input to models for large catchments. Conventionally, for areal precipitation estimation, 
station-based precipitation data are interpolated across the model domain using various methods, including 
Spline fitting, Inverse Distance Weighting (IDW) and the classical Thiessen Polygon, which are among the 
more popular and commonly used methods. Different precipitation interpolation methods will affect the spatial 
and temporal variability of areal precipitation inputs, resulting in different uncertainties when used to help 
calibrate a surface hydrologic model. This paper investigates the effect of the above three types of precipitation 
interpolation methods (ANUSPLIN surface, IDW surface and Thiessen polygon) on streamflow predictions. 
The Chaohe basin located in northern China is selected as the study area. It is an important headwater of the 
Miyun Reservoir which provides drinking water to Beijing and surrounding townships. Three lumped, surface 
hydrologic models (GR4J, IHACRES and Sacramento) are selected to study the accuracy and predictive 
uncertainty of these three types of precipitation interpolation on daily streamflow. The models were calibrated 
separately using discharge observations from three gauges in the basin. The results show that the ANUSPLIN 
surface interpolation performs the best overall under various combinations of conditions. The IDW surface 
also performs well in the upper and middle basin but the Thiessen polygon is inferior to the other two methods. 
The comparison of the three hydrologic models shows that IHACRES and Sacramento perform better than 
GR4J. The best combination is areal rainfall estimated using the ANUSPLIN derived surface with the 
IHACRES model in the case study catchments, though the Sacramento model is a close second. 
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1. INTRODUCTION 

Hydrological models are essential tools for understanding processes of the hydrological cycle and providing 
reliable information for sustainable water resources management in general and such operational issues as 
flood forecasting. Precipitation is the main driving factor of hydrological processes and is a key input to 
hydrological models. Traditionally, station-based observational precipitation data from observation network 
stations have been used as the source of precipitation in watershed modelling. However, precipitation 
measurements frequently are scarce such that the observation network may not fully capture the precipitation 
events and completely demonstrate the spatial variability of precipitation. Moreover, the precipitation stations 
are often distributed unevenly in the space, and interpolation techniques are often invoked to provide the 
necessary input data for the hydrological models in question. Some studies have found that runoff-generation 
is highly sensitive to the spatial and temporal variability of precipitation data, which is the main source of input 
data uncertainty in rainfall-runoff models (Smith, 2004). In this study, three types of precipitation input 
(Thiessen polygon, IDW surface grid and TPS surface grid) are applied in the Chaohe basin in northern China, 
and three lumped, surface hydrologic model (GR4J, IHACRES, and Sacramento) are selected to study the 
accuracy and predictive uncertainty of these three types of precipitation interpolation on daily streamflow. 

2. STUDY AREA 

The Chaohe watershed is an important headwater of Miyun Reservoir, supplying 70% of drinking water to 
Beijing and surrounding townships (population >19 million), and around 60% of the water in Miyun Reservoir 
originates from the Chaohe watershed (Sun et al., 2008). The climate of the watershed belongs to the temperate 
continental monsoon type that has the semi-arid characteristics. The watershed (E116°-118°, N40°-42°) drains 
an area of 5340 km2. Elevation ranges from 121 m to 2206 m (Figure 1), and 80% of the watershed is 
mountainous. There are three hydrological stations in the catchment. The hydrologic model is calibrated from 
data for the three sub-basins, described as basin1, basin2 and basin3 from upstream to downstream; basin2 
includes basin1; basin3 includes basin1 and basin2.The upstream watershed for basin3 gauge outlet represents 
the whole Chaohe basin. 

 

 

Figure 1. Location of the Chaohe basin, China. 
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Figure 2 depicts the time series of Rainfall (P), reference evapotranspiration (E) and streamflow (Q) of Chaohe 
basin. Figure 3 shows a correlation analysis of rainfall and streamflow for the Chaohe basin. The 
autocorrelation in the rainfall shows that it possesses a strong seasonality. The pattern near lag=0 shows there 
is little persistence in rainfall from one day to the next (there is an only slightly higher correlation coefficient 
at lag=1 than all subsequent values). The cross correlation between rainfall and streamflow gives some insight 
into the catchment response. There is a lag of approximately 1 month in the cross correlation peak near lag=365, 
indicating that the catchment takes about 1 month to significantly respond to the onset of the wet season. In 
addition, the seasonality in the streamflow has a smaller amplitude than the seasonality in the rainfall, indicating 
the impact of a significant baseflow response, and/or a limited impact of evaporation on seasonality. The peak 
of the cross correlation function is at lag=0, though there is a significant enhancement in the correlation 
coefficient at lag=1, indicating that the delay in the peak of the streamflow response compared to the rainfall 
is between 0 and 1 days. This is further emphasised in the Fourier deconvolution of these correlation functions, 
which shows a comparable response at a lag of 1 day. A successful rainfall-runoff model will need to reproduce 
these features. 

3. INTERPOLATION METHODS AND MODELS 

3.1. Thiessen polygon (THI)  

Thiessen polygon (THI) estimates areal precipitation values by dividing catchment area into polygons so that 
each polygon contains a single sample point (Chow and Chow, 1964; Thiessen, 1911). Each interpolated point 
assigns the value equal to the closest sample point. The THI approach has the merit of simplicity, but it ignores 
information on neighbouring points and does not create a continuous precipitation surface. With this approach, 
dynamic Thiessen polygons were created over the study region due to missing data during the study period. 

3.2. Inverse Distance Weighting (IDW) 

Inverse Distance Weighting (IDW) estimates the interpolation values based on the assumption that everything 
is related to everything else, but near things are more related than distant things. The value at an unknown point 
can be approximated by a weighted sum of the value of n known points. The weights used for averaging are a 
decreasing function of the distance between the known and unknown points (Philip and Watson, 1982). The 
general equation for IDW is: ௫ܲ = ∑ ߣ ܲ,ୀଵ  (1) 

where Px represents the interpolated rainfall in the point x, λi is a weight assigned to the station i and Pi is the 
observed precipitation for the station i. The weights are calculated as follows: ߣ = ௗషഀ∑ ௗషഀసభ , (2) 

where di is the distance from each station to the unknown site, and α is a power exponent. The power variable 
controls the significance of the surrounding points upon the interpolated value. A higher power tends to give 
larger weights to nearest points and increasingly less weights to distant points, and vice versa. Relevant studies 
have found that using a power value of 1 for yearly time steps, 2 for daily and monthly time steps and 3 for 
hourly time step can minimize the interpolation errors (Ly et al. 2011). In this paper, the α value was set to 2, 

 
Figure 2. Rainfall(P), reference 

evapotranspiration(E) and streamflow(Q) of 
Chaohe basin 

Figure 3. Correlation analysis of rainfall and 
streamflow for Chaohe basin 
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a value that is the most widely used for daily and monthly precipitation interpolation. The search radius can be 
defined by the range of a fixed number of closest points. The search radius used is 43 points in this study. 

3.3. The thin plate spline (TPS) 

The thin plate spline (TPS) technique interpolates precipitation as a function of latitude, longitude, and 
elevation and can model the effect of topography. In this study, ANUSPLIN4.4 (Hutchinson and Xu, 2013) 
was used to interpolate precipitation. The grids had a cell size of 0.01 degree×0.01 degree (approximately 1 
km × 1 km) and were combined with a DEM with the same resolution. The DEM used here to interrogate the 
final climate grid products was rebuilt from Global Multi-resolution Terrain Elevation Data 2010 
(GMTED2010) 7.5-arc-second dataset using ANUDEM5.3 (Hutchinson, 2011). GMTED2010 is the latest and 
possibly the best global terrain product to date. It is close to a real DEM rather than a canopy top surface as 
found in some satellite terrain products. A rebuilt 1-km resolution DEM will suppress sharp terrain features, 
which may be mapping errors, on the resulted climate surface grids and facilitate creating climate grids with 
more realistic spatial distribution patterns. 

The ANUSPLIN package, developed using a thin plate smoothing spline algorithm, contains FORTRAN 
programs for fitting (interpolating) surfaces to noisy data, in particular to climate data. It fits a surface to noisy 
multivariate data as functions of one or more independent variables.  

The partial spline model for N observed data values ݖ at positions ݔ is given by: ݖ = ݂ሺݔሻ + ∑ ሻݔΨሺߚ + ሺ݅									,ߝ = 1,⋯ , ݊; 			݆ = 1,⋯ , ሻୀଵ ,  (3) 

where f is an unknown smoothing function of ݔ , Ψ  are a set of p-dimensional function of independent 
covariates, ߚ  are a set of unknown p-dimensional parameters of coefficients of the Ψ , and each ߝ  is an 
independent, zero mean error term with covariance structure given by: ܧሺ்ߝߝሻ =  ଶ, (4)ߪܸ

where ߝ = ሺߝଵ,⋯ ,  ߝ ଶ may be known or unknown. The errorsߪ ሻ், ܸ is a positive definite n×n matrix andߝ
are uncorrelated if ܸ is diagonal and correlated otherwise (Hutchinson, 1995). 

Precipitation is greatly affected by topography. Hutchinson (1998) found that the interpolating accuracy of a 
precipitation surface would be enhanced significantly with a continuous, spatially varying, dependence on 
appropriately scaled elevation (Hutchinson, 1995, 1998a and b).  

The thin plate spline (TPS) technique has been applied in a number of studies and has proven to be one of the 
best techniques for interpolating precipitation (Arowolo et al. 2017). In this study, the TPS interpolation used 
the same rain-gauge stations as other interpolation methods. 

3.4. Rainfall runoff models 

We used three well-known conceptual rainfall–runoff models with different complexities from 4 to 13 
parameters (Table 1). In the GR4J model (Perrin et al. 2003), the storage of rainfall, evapotranspiration and 
percolation in the surface soil are controlled by the production store, and the routing of effective rainfall is 
controlled by the routing store. In the routing store, the quick flow is generated by 10% of the effective rainfall, 
and the slow flow is generated using 90% of effective rainfall (Le Moine et al, 2008). The GR4J model has 
been applied in various studies (Brigode et al, 2013). 

The IHACRES model has many versions, used in various studies (Post et al. 2012). We used the catchment 
moisture deficit (CMD) version (Croke and Jakeman, 2004) as it has more physical meaning for the parameters. 
There are two stores in the IHACRES model: the nonlinear store for the generation of effective rainfall using 
a nonlinear function to deal with the raw rainfall and using accounting equations to calculate the CMD output, 
and the linear store to convert effective rainfall into quick and slow flow using unit hydrographs. 

The Sacramento model has five runoff components: direct runoff from an impervious area, surface runoff, 
interflow, supplementary base flow and primary base flow. We used a 13 instead of 16 parameter version of 
the Sacramento model (Burnash et al. 1973). Briefly, excess rainfall becomes runoff through a unit hygrograph, 
and the rest of the rainfall fills various depths of soil moisture stores, which are interconnected. Loss through 
evapotranspiration happens at the soil stores, and the rest of the water becomes interflow and groundwater. The 
summation of the surface and lateral flow become streamflow. The Sacramento model has been used in many 
studies (Petheram et al. 2012).  

Table 1 gives descriptions of the parameters of the three rainfall–runoff models. We used the hydrologic 
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models, objective functions and calibration algorithms in the Hydrological Model Assessment and 
Development (Hydromad; Andrews et al. 2011) modelling package, which is an open-source software package 
in R. The Hydromad package is available at http://hydromad.catchment.org. 

 

3.5. Precipitation Station Density 

As shown in Figure 1, the 
density of precipitation 
stations is variable over the 
region, which could 
potentially impact the result. 
The Kernel Density (“KD”) 
function is adopted to create 
a smooth surface evaluating 
the density of precipitation 
stations. The KD function 
calculates the density of 
features in a neighbourhood 
around those features and 
expresses the result as 
magnitude per unit area 
(Szcześniak and Piniewski 
2015). The density map of 
precipitation stations is 
generated using the kernel 
density estimation provided 

Table 1. Parameters for each model. 
Parameter 
name 

Paramete
r No. 

Unit Range Description 

GR4J 

X1 1 mm 100–1,200 Maximum capacity of the production store 

X2 2 mm -5–3 Groundwater exchange coefficient 

X3 3 mm 20–300 1-day-ahead maximum capacity of the routing store 

X4 4 day 1.1–2.9 Time base of the unit hydrograph, UH1 

IHACRES-CMD 

f 1 - 0.5–1.5 CMD stress threshold as a proportion of d 

e - - 0.9–1.3 Temperature to potential evapotranspiration (PET) conversion factor 

d 2 mm 200–550 CMD threshold for producing flow 

τs (tau_s) 3 day 30–600 Time constant for slow flow store 

τq (tau_q) 4 day 1–10 Time constant for quick flow store 

vs (v_s) 5 - 0.1–1 Fractional volume for slow flow 

Sacramento 

UZTWM 1 mm 1–150 Upper zone tension water maximum capacity 

UZFWM 2 mm 1–150 Upper zone free water maximum capacity 

UZK 3 1/day 0.1–0.5 Upper zone free water lateral depletion rate 

PCTIM 4 - 0.000001–0.1 Fraction of the impervious area 

ADIMP 5 - 0–0.4 Fraction of the additional impervious area 

ZPERC 6 - 1–250 Maximum percolation rate coefficient 

REXP 7 - 0–5 Exponent of the percolation equation 

LZTWM 8 mm 1–500 Lower zone tension water maximum capacity 

LZFSM 9 mm 1–1,000 Lower zone supplementary free water maximum capacity 

LZFPM 10 mm 1–1,000 Lower zone primary free water maximum capacity 

LZSK 11 1/day 0.01–0.25 Lower zone supplementary free water depletion rate 

LZPK 12 1/day 0.0001–0.25 Lower zone primary free water depletion rate 

PFREE 13 - 0–0.6 Fraction percolating from upper to lower zone free water storage 

 

 
Figure 4. Density map of precipitation over the region (units: gauges per km2) 
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by ArcGIS Spatial Analyst (ESRI, 2012). The search radius is set to 100 km and the population field is set to 
none. The low density (particularly in the north) results in local ‘hot spots’ in the density map. 

The mean density of precipitation station (units: gauges per 104 km2) in each sub-basin is 0.87 (basin1), 1.00 
(basin2) and 1.01 (basin3) expressed in units (number of stations per km2). Compared to basin2 and basin3, 
the density of precipitation stations in basin1 is relatively sparse. 

3.6. Model performance criteria 

The Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970), a form of mean squared error, is widely used 
in hydrology as a criterion of hydrologic model performance and was often used as an objective function. The 
range of NSE is (-∞, 1], where 1 represents a perfect match between the observed and simulated flow. The 
NSE objective function focuses on fitting high flows (Krause et al. 2005). Here, it was also computed in terms 
of square root transformed flows (noted NSEsq hereafter), which make is it possible to assess model efficiency 
for both high and low-to-medium flows. 

The optimisation evolutionary technique used to calibrate parameter values is the Shuffled Complex Evolution 
(SCE; Duan et al, 1992) algorithm, one of the popular methods for parameter calibration. The SCE algorithm 
with global search has proved to be both effective and relatively efficient and provides similar performance to 
other evolutionary optimization algorithms (Shin et al. 2013). The value of the objective function for calibration 
of parameters can be used as model performance statistics.  

4. RESULTS 

The performance of all models applied to basin1 are poor, with NSEsq ranging between 0.39 and 0.53. The 
overall best performance was obtained using IDW estimated areal rainfall as input to the Sacramento model 
(average NSEsq value was 0.53), though IHACRES using ANUSPLIN was only slightly lower at 0.48, and 
GR4J using Thiessen gave 0.46. The reason for the poor performance for basin1 may be due to the low density 
of rain-gauge stations in basin1 as described above. For basin2, all models performed best using ANUSPLIN 
derived areal rainfall, with NSEsq = 0.68 for the IHACRES and Sacramento models, and 0.58 for the GR4J 
model (averaged across all calibration periods). A similar result is found for basin3 (all models performing 
slightly better when using ANUSPLIN derived areal rainfall), with IHACRES performing slightly better than 
the other models (average NSEsq values were: 0.68 (IHACRES), 0.59 (GR4J) and 0.66 (Sacramento)). 

Overall, the model performance in basin1 is not as good as basin2 and basin3; the ANUSPLIN surface 
interpolation performed the best overall under various combinations of conditions. The IDW surface also 
performs well in the upper and middle basin but the Thiessen polygon is inferior to the other two methods. In 
regard to the hydrologic models, IHACRES and Sacramento perform better than GR4J for these basins, while 
the combination of ANUSPLIN with IHACRES perform the best, with the Sacramento model a close second.  

For IHACRES, all areal rainfall estimation methods yield similar parameter values for model parameters f, vs 
and τs. For parameter τs, areal rainfall estimated using ANUSPLIN yields a much smaller range in values than 
that using IDW or Theissen polygon methods. There is a significant difference between basins in the parameter 
values for vs and τs, with basin1 having a significant higher calibrated value for both parameters. A similar 
pattern is seen when using GR4J: one of the parameters has a smaller variability in calibrated r value for 
different calibration periods when using areal rainfall estimated by ANUSPLIN. The other parameters show 
comparable variability between the different areal rainfall estimation methods. The situation when using the 
Sacramento model is different. Some parameters show greater variability when using ANUSPLIN derived 
areal rainfall (e.g. LZFSM and LSFPM), while others show greater variability when using Thiessen Polygon 
derived areal rainfall (e.g. UZTWM).  

5. CONCLUSIONS 

The ANUSPLIN surface interpolation performs the best overall under various combinations of conditions. The 
IDW surface also performs well in the upper and middle basin but the Thiessen polygon is inferior to the other 
two methods; as to hydrologic models, IHACRES and Sacramento perform better than GR4J; the combination 
of ANUSPLIN with IHACRES performs the best. The parameter analysis of IHACRES and GR4J models 
shows some of its calibrated  parameters yield a much smaller range in variability using ANUSPLIN derived 
areal rainfall. Further studies will be concentrated on sensitivity and uncertainty analysis of these models. 
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