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Abstract: In pursuit of a more robust provenance in the field of species distribution modelling, an extensive 
literature search was undertaken to find the typical default values, and the range of values, for configuration 
settings of a number of the most commonly used statistical algorithms available for constructing species 
distribution models (SDM), as implemented in the R script packages (such as Dismo and Biomod2) or other 
species distribution modelling programs like Maxent. We found that documentation of SDM algorithm 
configuration option settings in the SDM literature is very uncommon, and the justifications for these settings 
were minimal, when present. Such settings were often the R default values, or were the result of trial and error. 
This is potentially concerning for a number of reasons; it detracts from the robustness of the provenance for 
such SDM studies; a lack of documentation of configuration option settings in a paper prevents the replication 
of an experiment, which contravenes one of the main tenets of the scientific method. Inappropriate or 
uninformed configuration option settings are particularly concerning if they represent a poorly understood 
ecological variable or process, and if the algorithm is sensitive to such settings; this could result in erroneous 
and/or unrealistic SDMs. 

We test the sensitivity of two commonly used SDM algorithms to variation in configuration options settings: 
Random Forests and Boosted Regression Trees. A process of expert elicitation was used to derive a range of 
appropriate values with which to test the sensitivity of our algorithms. We chose to use species occurrence 
records for the Koala (Phascolartos cinereus) for our sensitivity tests, since the species has a well known 
distribution. Results were assessed by comparing the geospatial distribution from each sensitivity test (i.e. 
altered-settings) SDM for differences compared to the control SDM (i.e. default settings), using geographical 
information systems (QGIS). In addition, two performance measures were used to compare differences among 
the altered-setting SDMs to the control. The aim of our study was to be able to draw conclusions as to how 
reliable reported SDM results may be in light of the sensitivity of their algorithms to certain settings, given the 
often arbitrary nature of such settings, and the lack of awareness of, and/or attendance to this issue in most of 
the published SDM literature. Our results indicate that all two algorithms tested showed sensitivity to alternate 
values for some of their settings. Therefore this study has showed that the choice of configuration option 
settings in Random Forests and Boosted Regression Trees has an impact on the results, and that assigning 
suitable values for these settings is a relevant consideration and as such should be always published along with 
the model. 
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1. INTRODUCTION 

Progress made in computational science in recent years has produced concomitant gains and exciting 
developments in many scientific disciplines. Many researchers in the computational sciences have increasingly 
advocated for reproducibility of research, which involves the data and computer code used in a published study 
to be made available to others, as a minimum standard when assessing the validity of scientific claims. Cassey 
and Blackburn (2006) have argued that in order for a scientific study to be acceptable for publication, it should 
be reproducible (NRC, 2003). They contend that “reproducibility is increasingly being requested by journals”. 
This standard of reproducibility is based on the theoretically available detailed log of every action taken using 
computers, which underlies every computational experiment. If this code were available for scrutiny, such 
transparency in research would surpass the analogous non-computational experimental descriptions printed in 
journals using a human language (Peng, 2011). 

For scientific fields which inform policy and management decisions, and in which there is difficulty in 
reproducing field experiments and techniques due to the non-replicable nature of environmental conditions, 
there is critical need to track the provenance of derived data products and scientific results. ‘Provenance’, 
which is “information about entities, activities, and people involved in producing a piece of data or thing, can 
be used to form assessments about its quality, reliability or trustworthiness” (W3C Working Group, 2013).  It 
should cover initial data collection, quality assurance, analyses, modelling and publication (Reichman et al 
2011). 

It is with a view towards more robust provenance in the field of species distribution modelling (SDMg), that a 
literature search was undertaken to find the typical default values, and an appropriate range of values for 
configuration option settings in each of the statistical algorithms available for constructing species distribution 
models (SDM) in the Biodiversity and Climate Change Virtual Laboratory (BCCVL) (Hallgren and Mackey, 
2014). The BCCVL (www.bccvl.org.au) is an online, cloud-based virtual laboratory which brings together a 
multitude of datasets, SDM algorithms and several different modelling experiment types to create a highly 
accessible SDMg platform which can be used to investigate the impact of climate change on species 
distributions, species traits, and several measures of biodiversity in Australia and around the world (Hallgren 
et al., 2016). The sources of the default values of packages in R (R Core Team, 2017), which provided the 
specific implementation of the algorithms used in the BCCVL, were also investigated. Many SDM studies do 
not publish SDM configuration option settings, and if they do, then justifications for these parameter values, 
are minimal, if provided, and often rely on the R default values.   

It is advisable to document the rationale for SDM configuration option settings for the SDM algorithms 
implemented in the R script packages (such as Dismo (Hijmans, 2013) and Biomod2 (Thuiller, et al., 2009) or 
other SDMg programs, like MaxEnt (Phillips et al., 2006). Omitting such documentation detracts from the 
robustness of the provenance for such SDMg studies. If no information for SDM configuration option settings 
is provided in a paper, it makes the SDM experiments unable to be replicated (providing a barrier to 
provenance, and contravening one of the main tenets of the scientific method). Moreover, it works against 
methodological transparency, which is critical to progress in this field. We contend that it is good scientific 
practice, and critical for the provenance of a study, to be able to explicitly state and justify the configurable 
settings used in any modelling exercise.  

Configuration option settings which are inappropriate, unrealistic or uninformed, are particularly concerning 
if they represent a poorly understood ecological variable/process, and also if the resulting SDM is sensitive to 
their values. Without knowing how sensitive an algorithm is to all configuration option settings, then 
inappropriately assigned values, i.e. values without reasonable scientific justification, could possibly lead, in 
an unpredictable manner, to erroneous and/or unrealistic SDM results.  The rigour of the modelling process, 
the validity of the results, and the transparency and provenance of the research may be compromised. 

There are a number of studies which investigate the sensitivity of SDM algorithms to one aspect of the 
modelling process e.g.; sensitivity to pseudoabsence selection in seven different SDM (Barbet-Massin et al., 
2012), or sensitivity to input data (Pirathiban et al., 2015), or for one SDM algorithm; (e.g. sensitivity to several 
model settings for MaxEnt (Merow et al. 2013)). Beaumont et al. (2016) also tested a range of SDMs regarding 
the ‘sensitivity’ to projected climate change scenarios in terms of their likelihood to simulate extreme 
distribution change. However, to date there has been no systematic investigation to sensitivity to a wide range 
of configuration option settings for many SDM algorithms. 

This study reports on a project designed to address this gap. It aims to: (1) Test the sensitivity of algorithms 
which are widely used in species distribution modelling to variation in their configuration option settings; (2) 
draw conclusions as to how reliable the resulting SDMs are, in light of this sensitivity, and given the arbitrary 

51



Hallgren et al., Sensitivity Analysis to configuration option settings 

nature of the default settings, and the lack of awareness of, and/or attendance to, this issue in most of the 
published literature; (3) to articulate why setting reasonable/justifiable settings are important for the algorithms 
tested - and which configuration options it is most important to be careful setting, given the algorithm’s 
sensitivity to them.  

2. METHODOLOGY 

Since different statistical models, of vastly different forms, may fit the same process equally well, with each 
providing a different perspective or “angle” onto the same phenomenon, it is not possible to know ahead of 
time, for a particular species, which “shape” or template for a SDM will fit well. For this reason, we control 
for this uncertainty by investigating more than one SDM algorithm for our modelled species.  

In this initial study, we examined two machine-learning algorithms for SDM (Franklin, 2010), which are both 
extensions of Classification Trees (CT): Boosted Regression Trees (BRT: Breiman, 2001) and Random Forests 
(RF: De'Ath, 2007). Both algorithms are implemented in the BCCVL. A CT defines a sequence of decision 
rules to define environmental profiles (e.g. low minimum temperatures, under 10°C). Each profile has a 
different probability of koala presence, defined by different ranges of climate for occurrence or pseudo-absence 
sites. We assess sensitivity of each algorithm to configuration options in several categories: robustness, 
complexity, variable importance and sampling strategy for pseudo-absences. CTs are extremely flexible, so 
that small changes in inputs often result in marked changes to the fitted tree (Hastie et al., 2012). To improve 
robustness, both RF and BRT resample input data, called `bagging’, to provide an average prediction across a 
number (‘maximum #trees’) of tree models. However, BRT only bags a certain amount of data (the ‘bag 
fraction’), for a random partition of the data (for a given ‘random seed’). 

For RF, the complexity of each tree is affected by the number and size of final profiles, respectively the 
‘maximum #terminal nodes’ (maximum number of terminal nodes that trees in the forest can have) and 
‘terminal node size’ (minimum number of observations in terminal nodes). BRT also considers the number of 
decision rules required to define any profile (‘tree complexity’ which control whether interactions between 
predictor variables are fitted). BRT focuses more effort (defined by ‘learning rate’ (determines the contribution 
of each tree to the growing model) and a ‘tolerance value’ (determines when algorithm stops) on decision rules 
with high uncertainty, effectively boosting those parts of the tree. In addition, within the ‘Biomod2’ library, 
variable importance for BRT is determined via cross-validation, calculated for each of a ‘number of cross-
validation’ subsets, that may or may not be able to ‘stratify’ presences (to ensure each subset contains a certain 
proportion of presences). The Random Forest algorithm was tested for sensitivity to three configurable options 
in the BCCVL, and the BRT algorithm was tested for sensitivity to seven configurable options in the BCCVL. 
The control and altered sensitivity test values for these settings are shown in Table 1. Each option needed a 
different strategy for choosing values, depending on its type. For instance tolerance (a positive real) and 
maximum number of trees (a natural number) were both better assessed at increasing orders of magnitude, 
rather than on some linear scale.  Some settings were categorical, e.g. whether to stratify prevalences is 
dichotomous. Some settings manage computational overheads, and are therefore only considered if the model 
provides poor fit.  

We also assessed two configuration options that affect the pseudo-absences generated for any SDM algorithm. 
The first is the sampling intensity of pseudo-absences generated, in relation to observed occurrences 
(‘absence:presence ratio’). In this study we sought an Australia-wide SDM, to compare with published 
literature. For this reason, the Surface-Range Envelope (SRE) algorithm (Araujo and Peterson, 2012) was used 
to generate pseudo-absences from environments dissimilar from occurrences, falling beyond the outer quantile 
(e.g. 2.5th and 97.5th) for any environmental gradient. The second setting therefore specifies the SRE quantile 
used (e.g. 0.025 and 0.975): more extreme values (close to 0 or 1) specify absences come from environments 
that are more dissimilar to presences. 

We deliberately chose a relatively simple experimental design for our sensitivity analyses, as a proof of 
concept. A control model of Koala (Phascolartos cinereus) distribution was built using the default 
configuration option settings of each algorithm. We chose to use species occurrence records (presence points) 
for the Koala for our sensitivity tests, since the species has been widely studied. We have not used true absence 
points.  All SDM experiments were implemented with ecologically appropriate domain constraints to 
correspond with the known distribution of Koala (i.e. an ecoregion or bioregion) – this is to constrain the 
placement of pseudo-absence points generated by the BCCVL. A process of expert elicitation was used to 
derive a range of appropriate values with which to test the sensitivity of our algorithms (Al-Khairy, 2017). 

To evaluate the difference between the control SDMs (i.e. those using default configuration options settings) 
and altered-settings SDMs, we have assessed the results by comparing the geospatial distribution of the control 
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SDM and the altered-settings SDM, using geographical information systems (QGIS). 

Table 1. Configuration options and test values for (a) both algorithms (affecting the pseudo-absences used as 
input), (b) Random Forests (RF) and (c) Boosted Regression Trees (BRT).  

 (a) Inputs to all algorithms (b) Random Forest 

 
Absence-presence 

ratio 
Pseudo absence 

SRE quantile 
Max no. trees 

Terminal node 
size 

Max. no. terminal 
nodes* 

DEFAULT 1.0 none 500 1 none 

TEST 

VALUES 

0.1 0.05 100 5 6 
0.5 0.10 250 10 12 
1.0 0.20 1000 20 30 
2.0  2000 100 60 

10.0     

 

(c) Boosted Regression Trees 

 
Tree 

complexity 
Learning 

rate 
Bag fraction 

No. of cross 
validations 

Prevalence 
stratify 

Max no. 
trees 

Tolerance 
value 

Random 
seed 

DEFAULT 1 0.01 0.75 10 Yes 10000 0.001 1 

TEST 
VALUES 

5 0.05 0.9 4 no 1000 0.1 5 
10 0.01 0.95 10  3000 0.05 10 
15 0.005 0.99 20  10000 0.01 20 
20 0.001 0.8 100  30000 0.001 100 

 0.0005  0.5    0.005  
  0.2      
  0.1      

* The maximum number of terminal nodes for Random Forests depends on the number of predictor variables used to 
construct the model, in this case, 6. 

We have also noted the differences 
between the control model and 
altered-settings BRT models in 
terms of two evaluation statistics 
(Table 2). We chose two examples: 
the false discovery rate (proportion 
of predicted presences that are 
observed absences) and 
misclassification rate (proportion 
of incorrectly predicted cases), can 
illustrate how alternative 
configuration options settings can 
impact these metrics (Low-Choy, 
2015). 

Occurrence datasets for the Koala 
were downloaded from the Atlas of 
Living Australia (ALA) and 
cleaned for duplicates, anomalous 
occurrence points (such as those from zoos, herbariums, etc., or caused by different geographic coordinate 
systems), unnecessary replicates in space and time, and for appropriate dates of occurrence. Appropriate habitat 
predictors (e.g. environment and climate variables) were derived from literature on the climatic conditions that 
affect the diet composition and physiological stress of koalas (Davis et al., 2014). Survivorship of Koalas is 
directly and indirectly determined by the frequency, intensity and duration of extreme events such as 
heatwaves, drought and humidity (Gordon, 1988; Seabrook et al., 2011, Adams, 2010), water availability and 
rainfall, all of which can affect Koala’s distribution, density, habitat preferences, home range sizes, habitat 
quality, physiological stress (Davies et al., 2013b,c; Sullivan et al., 2003a), and food resource availability 
(Gordon 1988). Therefore, these predictor variables comprised the WorldClim current climate (Hijmans et al., 
2005) bioclimatic variables #5 (Max Temperature of Warmest Month), #9 (Mean Temperature of Driest 
Quarter), #10 (Mean Temperature of Warmest Quarter), #12 (Annual Precipitation), #14 (Precipitation of 
Driest Month), and #17 (Precipitation of Driest Quarter). All of these were available in the BCCVL.  

Table 2. Evaluation statistics for BRT, for all sensitivity tests, where 
statistics showed some sensitivity. 

Sensitivity Tests 
Optimum 
threshold 

value: 

False 
Discovery 

Rate (FDR) 

Misclassificat
ion Rate 

Control 0.336 0.501 0.501 
P-A Ratio 0.1 0.585 0.091 0.091 
P-A ratio 10 0.216 0.686 0.686 

P-A ratio SRE 0.05 0.335 0.501 0.501 
Learning Rate 0.0005 0.49 0.501 0.501 
Learning Rate 0.05 0.089 0.501 0.501 

Trees 1000 0.335 0.501 0.501 
Tolerance 0.01 0.335 0.501 0.501 
Tolerance 0.05 0.337 0.501 0.501 

Tree Complexity 5 0.316 0.501 0.501 
Tree Complexity 20 0.312 0.501 0.501 
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3. RESULTS 

The Random Forest (RF) algorithm showed sensitivity to different settings for the ‘maximum number of 
terminal nodes’ configuration option (from 60 down to 6), with noticeable increases in modelled Koala 
distribution indicating that predicted Koala distribution increased as tree complexity reduced. RF showed less 
sensitivity to different test values for the ‘terminal node size’ configuration option. The area of predicted Koala 
distribution increased with the ‘terminal node size’ configuration option (varying from 5 to 100), as a different 
measure of the tree complexity reduced. RF showed a low level of sensitivity to different test values for the 
‘maximum number of trees’, with perceptible differences in modelled Koala distribution at very small scales 
with different test values of 100–2000, compared to the default value of 500.  

 
Figure 1. Projected distribution of Koala as a result of using alternative configuration option settings in 

Random Forests and Boosted Regression Trees. 

 

RF Control BRT Control 
BRT Learning Rate: 

0.0005 
BRT Learning Rate: 

0.05 

 
RF P-A ratio: 0.1 RF P-A ratio: 10 BRT P-A ratio: 0.1 BRT P-A ratio: 10 

 
RF SRE: 0.05 P-A option SRE: 0.1 BRT SRE: 0.05 BRT SRE: 0.2 

 
RF Max # Nodes: 6 RF Max # Nodes: 60 BRT Bag fraction: 0.2 BRT Bag fraction: 0.99 

 

RF Node Size: 5 RF Node Size: 100 
BRT: Tree 

Complexity: 5 
BRT Tree  

Complexity: 20 
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The BRT algorithm showed sensitivity to different test values for the ‘tree complexity’ option, with a 
noticeably expanded Koala distribution with lower values for this option, indicating an inverse relationship, 
i.e. an increase in area of Koala distribution (red areas in Fig. 1) with decreasing complexity (i.e. from 20 to 
5). There was minimal sensitivity shown to the ‘learning rate’ option for test values from 0.0005 to 0.001, but 
there was a noticeably expanded Koala distribution with a test value of 0.05, i.e. an increase in probability of 
Koala distribution along the east and southeast coast of Australia (brighter red areas in Figure 1) with 
decreasing probability of distribution in inland areas.  

The BRT algorithm showed no noticeable sensitivity to robustness options: different test values for the 
‘maximum number of trees’, ‘tolerance value’ and ‘prevalence stratify’ options (among those values or options 
tested), with no apparent change in Koala distribution as values of these options increased from 1000 to 10000 
(trees), from 0.005 to 0.1 (tolerance), and from ‘yes’ to ‘no’ respectively (prevalence stratify). There was some 
sensitivity shown to different test values for the ‘bag fraction’ option, with an almost unnoticeably expanded 
Koala distribution, particularly on Queensland coast, with (only) the lowest test value of this option, (e.g. bag 
fraction = 0.1) and then no change in the area of koala distribution from values of bag fraction of 0.2 to 0.9. 

The BRT algorithm showed minimal sensitivity to different test values for the ‘number of cross validations’ 
option (i.e. that should be created for training and testing the model), with no discernable change in Koala 
distribution from increasing values of this option setting from 4 to 100. There was noticeable sensitivity to 
different test values for the ‘absence-presence ratio’ setting with a marked decrease in Koala distribution (and 
lower probability of occurrence) from increasing values of this option from 0.1 to 10 (see Fig. 1). Minimal 
sensitivity was shown to different test values for the ‘the quantile for the SRE’ setting for the pseudo-absence 
strategy option, with only small discernable changes in Koala distribution from increasing values from 0.05 to 
0.2. The evaluation statistics we chose to use as examples, illustrate that that the alternative configuration 
option settings do indeed have some impact on these statistics. 

4. DISCUSSION AND CONCLUSIONS 

An aim of our study was to be able to draw conclusions as to how reliable SDMs are in light of the sensitivity 
of their algorithms to certain settings, given the often arbitrary nature of such settings, and generally infrequent 
attendance to this issue in most of the published literature.  With respect to an algorithm’s configuration, we 
suggest that SDM studies that have not chosen appropriate settings may yield results that are inaccurate, to the 
extent that the algorithm is sensitive to those settings. At the very least, this source of uncertainty should be 
acknowledged and minimized. 

Our results indicate that not all configuration options show the same sensitivity, and that of the two algorithms 
tested, BRT showed sensitivity to alternate settings for five configuration options while RF showed sensitivity 
to three configuration options. 

It is the case for many of the configuration options investigated, particularly for BRT and RF; that the choice 
of settings for these options can impact the resulting projected distribution markedly, as well as the evaluative 
statistics, and hence that care must be taken to choose sensible and justifiable values for SDM algorithms.  

Another aim of this study was to define which configuration options need setting thoughtfully, given an 
algorithm’s sensitivity to them. Our results suggest that for BRT, the configuration options to be most careful 
when setting: complexity via the ‘maximum number of terminal nodes’, ‘terminal node size’, ‘tree complexity; 
the level of robustness to trees via ‘learning rate’ and ‘bag fraction’; and sampling intensity via ‘absence-
presence ratio’ parameters. For RF, our results indicate that care should be taken when setting the complexity 
via ‘maximum number of terminal nodes, ‘terminal node size’, and ‘maximum number of trees’ parameters.  

We note that all sensitivities are relative to the control model chosen. Further work will examine broader 
sensitivity across multiple controls. 
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