
Accuracy Analysis of the Brownian Motion Approach for
the Ballistic Resistance Estimation : Comparison of

Numerical and Experimental Distributions
B. Tahentia, F. Coghe b, R. Nasri c

aMilitary Academy of Fondouk Djedid, (Tunisia)
bRoyal Military Academy, (Belgium)

cNational Engineering School of Tunis, (Tunisia)
Email: tahenti@hotmail.com

Abstract: The ballistic resistance assessment is an active research field that deals with the estimation of 
the perforation probability of a given protection/bullet combination. The modelling challenge is to increase 
accuracy and precision of estimates based on a small sample of hidden penetration processes (limitation of 
experimental measurement tools due to the complexity of dynamic impact phenomenon). Actually, existing 
methods make use of the impacting bullet initial velocity and the protection response coded in a binary out-
come (0 if perforation takes place and 1 if not). Recently, a Brownian motion approach has been proposed 
using the numerical integration of stochastic differential equations. This contribution analysis the sensitivity 
of the ballistic resistance estimations regarding the model parameters. To fulfil the desired goal, the numerical 
and experimental distribution of the estimates are compared. Available database allows the computation of a 
point estimation of the perforation probability at a given impact velocity. Statistical Bootstrap is performed 
to obtain the experimental distribution of the perforation probability in order to avoid costly experiments. In 
the other side, the model parameters uncertainty is propagated to the model estimations using Monte Carlo 
simulations. The resulted numerical distribution encompass the inherent stochastic model randomness and 
the model parameters uncertainty effect. Furthermore, the numerical experiments are generated as the exper-
imental observations in the interest of a fair comparison. First, the numerical and experimental distributions 
are compared regarding the optimum values of the model parameters and randomly selected values over the 
tolerance intervals. It is concluded that the model presents a low sensitivity to the parameters estimation. Next, 
the experimental and numerical variance of the perforation probabilities are investigated. It is observed that 
the model estimations are in good agreement with the experimental one. Finally, the distribution of the mean 
difference between the numerical and experimental distributions is analysed as a function of the bullet impact 
velocity. Again, the model appears to have a low sensitivity to its parameters estimation uncertainty. 
Further-more, it is showed that the model performance depends on the bullet initial impact velocity. 
Therefore, it is suggested to further investigate the functional form of the stochastic differential equation 
coefficient in order to better estimate the perforation probability as a function of the initial impact velocity.
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1 INTRODUCTION

The ballistic resistance assessment of protection materials is an important issue either for manufacturer or
purchaser. Therefore, a growing interest is addressed to the accuracy in the evaluation of materials resistance
to ballistic threats. This may be of increasing concern especially in light of the constraining requirements
on minimizing protection weight and increasing comfort. Actually, two key measurements are used in the
ballistic evaluation of armour systems. The first consists in the ballistic limit velocity V50, bullet impact
velocity at which partial and complete penetration are equally likely. The second is the limit velocity V0 which
is attended to quantify the maximum impact velocity with zero perforation of the target among all the observed
trials. The STANAG 2920 (NATO (2003)) defines a standardized method for the estimation of the V50 velocity.
Comparing different threat/protection combination using only the information provided by the V50 velocity can
be too restrictive. Recently, considerable attention has been devoted to the determination of the probability
of perforation curve as a function of the impact velocities. For this reason, the focus of recent research has
been the estimation of the material response variability under impact loading. Langlie (1963), Kneubuehl
(2003) and Finney and Tattersfield (1952) proposed different purely statistical models. They assumed that the
velocities with observed perforation of the target are normally distributed V ∼ N(V50, σ̂

2). Thus, the system
response variability is described by the estimated standard deviation σ̂. However, an emerging stochastic
model based on the Brownian motion approach has been advanced by Coghe et al. (2016). Later, Tahenti
et al. (2017) implemented this modelling idea using the Chi-square and Kolmogorov-Smirnov goodness of fit
tests. The aim of this paper is the analysis of the accuracy of the Brownian motion approach in estimating
experimentally computed probability of perforation. For this, statistical Bootstrap is performed to establish
the distributions of the experimental estimations. In the other side, the numerical distributions are obtained by
running Monte Carlo error propagation on the final results of Tahenti et al. (2017) Work. To fulfil the specified
goal, the needed experimental database is introduced. Next, the stochastic model is briefly explained. In
addition, statistical bootstrap and Monte Carlo error propagation concepts are developed in order to be applied
in the present analysis. Finally, the retrieved results are discussed.

2 EXPERIMENTAL AND NUMERICAL ESTIMATION

Ballistic experiments are performed to observe the response of the protection subjected to the impact of a
specific bullet with a given impact velocity. Then, the provided database is manipulated by existing models in
various ways for the sake of estimating the V50 and σ̂ (for the Langlie (1963), Kneubuehl (2003) and Finney
and Tattersfield (1952) models). In the current section, the experimental method and database needed for the
estimation of the ballistic resistance are introduced. Furthermore, the emerging Brownian motion approach is
summarized.

2.1 Experimental Approach

A conventional testing set-up is proposed by different standards such as the STANAG 2920 (NATO (2003)),
the MIL-662F (Department of Defense (1997)) and the NIJ 0101.06 (National Institute of Justice (2008)). The
recorded measurements are the bullet impact velocity Vi and the protection reaction coded in a binary outcome;
Ui equal to zero if perforation takes place and 1 if not. Maldague et al. (2010) created a large database of impact

Table 1. Experimental results for the 5.56 mm projectile impacts against mild steel plates Maldague et al.
(2010).

Class Nr Vmin (m.s−1) Vmax (m.s−1) Perforations Impacts Fexp

1 480 490 0 22 0.0

2 490 500 2 63 0.0317

3 500 510 27 109 0.2477

4 510 520 48 82 0.5854

5 520 530 130 157 0.8280

6 530 540 67 73 0.9178

7 540 550 28 28 1.0
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loading of a metallic plate. A two spaced mild steel plates were tested against the 5.56x45mm bullet. The total
thickness of the protection is equal to H = 5.60 mm. Table 1 recapitulates the collected experimental results.
Statistically speaking, for each impacting velocity, the test should be repeated n times at the same condition.
Therefore, an estimation of the experimental frequency of perforation can be performed. Given the complexity
of controlling precisely the impact velocity, ballistic testing is conducted at various impact velocities. Finally,
the experimental frequency Fexpi

(where i=1,2...7 is referring to the corresponding class of velocities) is
computed based on the number of perforation occurrence within classes of impact velocity as displayed in
table 1.

2.2 Brownian Motion Approach

In a recent paper by Tahenti et al. (2017), The bullet motion within the target has been modelled as a stochastic
motion. In fact, the deterministic Newton’s second law is transformed to a stochastic differential equation
using the Brownian motion process. So, the system of equations that describes the random bullet motion is as
follows : dV (t) = a(t, V )dt+ σ(t, V )dW (t)

dX(t) = V (t)dt
X(0) = 0 and V (0) = Vi

(1)

where a(t, V ) is the bullet deceleration, V (t) is the instantaneous bullet velocity, X(t) is the bullet position
and σ(t, V ) is the diffusion coefficient. The Brownian motion W (t) is a Gaussian process characterized by
continuous paths and independent increments. The reader interested in the mathematical background and the
numerical implementation of this modelling approach may be referred to Tahenti et al. (2017). Under the as-
sumption of constant bullet deceleration and diffusion coefficient, Tahenti et al. (2017) validated his modelling
approach with experimental observations using the parameters (a = 2.358× 107 m s−2, σ = 4205) that are
the best-found fit over three hundred optimization of the Chi-square and Kolmogorov-Smirnov goodness of
fit criterion (the collected data (a, σ) from all the applied optimization are called hereafter the optimization
sample). The goal in this work is to compare the distribution of experimentally computed probability with
these established based on the Brownian motion approach. In the next section statistical bootstrap and error
propagation tools are brought to bear on the problem of comparing the probability distribution of experimental
and numerical estimation.

3 ERROR PROPAGATION

3.1 Statistical Bootstrap

At a given impact velocity Vi (or ith class of velocities), the number of occurred perforations (niUi=0
) follows a

Binomial lawB(ni, Fexpi
) where ni is the total number of impacts in the considered class. The experimentally

established contingency table provide a punctual estimation of the frequency of perforations as is displayed
in table 1: the sample estimation Fexpi

. However, an empirical distribution of Fexpi
can be approximated

using statistical non-parametric bootstrap. Figure 1 shows a conceptual design of the bootstrapping technique.
Namely, original observations are sampled with replacement using Monte Carlo simulations. Therefore, N
simulated samples with equal size to the initial one are provided. Computing the expected values of the
probability of perforation F̂expi

based on the new samples allow the construction of the bootstrap distribution
per class of impact velocities i. It is to be noted that, in the present analysis, the bootstrap distribution is
referred to as the experimental one given it was established on experimental observations.

3.2 Uncertainty Propagation

Tahenti et al. (2017) showed that the numerical model passes the Chi-square and Kolmogorov-Smirnov
goodness of fit tests to experimental results for (a ∈ [2.34× 107, 2.363× 107],σ ∈ [3300, 4400]) and
(a ∈ [2.34× 107, 2.3635× 107], σ ∈ [3400, 5000]), respectively. The focus of this research is to investi-
gate the effect of this parameter estimation uncertainty on the prediction of the perforation probability, Fsimi

(simulated frequency of perforation). In fact, uncertainty propagation using Monte Carlo simulations can be
performed in order to visualize the distributions of Fsim based on the distribution of a and σ. Therefore,
the error in the estimation of the stochastic model parameters is propagated to the model output which lead
to the establishment of the numerical distribution. In this implementation, first, the two distribution are go-
ing to be compared using the best-found parameters. Afterwards, the parameters are randomly selected from
the initially established optimization sample . Finally, (a, σ) are uniformly selected from their corresponding
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Figure 1. Conceptual draw of the bootstrap method.

intervals. Consequently, to enable a fair comparison of numerical and experimental results, the numerical
experiments are executed in the same conditions as the observed ballistic experiments. Thus, for each impact
velocity Vi, the selected couple (a, σ) is inserted in the stochastic model defined in equation 1. The observed
response is Ui = 0 if the bullet penetration X is greater than the target thickness H (perforation) and Ui = 1 if
not (no perforation). In other words, a numerical contingency table is created in the same way as the experi-
mental one. Repeating this operation N times provides the distribution of the Fsimi

regarding the uncertainty
on the parameters (a, σ) using the Brownian motion approach.

4 RESULTS AND DISCUSSION

4.1 Experimental Versus Numerical Distributions

In order to verify the accuracy of the Brownian motion approach in modelling ballistic experiments, numerical
and experimental distributions of the predictions are presented side by side in figure 2. Further, figure 2
illustrates the obtained results for the classes 2,3,4,5 and 6 of impact velocities (those are the classes that
experimentally show a variability in the target response). Statistical bootstrap allowed the establishment of
F̂expi

distribution based on the observed sample per class of impact velocities. The distribution of Fsimi

is constructed using the Brownian motion approach based on the parameters (a, σ) that give the best fit to
experimental results.

Unfortunately, at first glance, it seems that there is a given inconsistency between numerical and experimental
distributions especially for low and high probabilities of perforation (class 2 and 6 of extreme probabilities).
However, visual inspection of the two distributions in each class shows that they almost have the same shape,
whereas, the Brownian motion approach produces larger distribution (therefore smaller amplitude) than the
experimental one. In fact, the major discrepancy in the classes 2, 3, 5 and 6 manifests in the bias between
the means of the two distributions. It can be seen that this bias increase as impact velocities with low and
high probability of perforation are searched (the absolute value of the bias is 0.036, 0.022, 0.019 and 0.047
respectively). The most interesting result of this analysis is the excellent agreement between the experimental
and numerical distribution in the 4th class. In fact, this class is expected to contain the V50 velocity. This
results is another evidence in favour of this modelling approach in the presence of the restrictive assumption of
the constant deceleration and diffusion in the model. In detail, Tahenti et al. (2017) showed that deceleration
prediction was consistent with the average resisting force applied on the bullet as explained by Rosenberg and
Dekel (2012). In such conditions, the model appears to catch the mean behaviour of the protection (impact
velocities near the V50) however as impact velocities shrink to extreme values, the model starts to show some
discrepancy. Therefore, this fact encourages the attribution of those differences to the model assumption rather
than to its inability to represent the randomness of the phenomena.
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Figure 2. Experimental and numerical histograms of the perforation probability in the classes 2,3,4,5 and 6
of table 1.

4.2 Effect of Model Parameters Uncertainty

After having investigated the behaviour of the two distributions using the best fit results, the uncertainty effect 
is going to be analyzed. Figure 3 displays the distributions of the 4th class results using the optimization param-
eters and uniformly selected parameters. It can be seen that the uncertainty in parameters estimation does not 
cause a remarkable deterioration in the agreement between the experimental and the numerical distributions. 
In this analysis, the distribution of the results in the classes 2,3,5 and 6 were not shown given that the main 
observations of the previous section holds without appearance of meaningful differences. This investigation 
demonstrates that the model does not present a high sensitivity regarding the estimation of its parameters. It is 
worth remarking that the numerical distribution encompass the variability relative to the stochastic model itself 
(manifesting in the diffusion coefficient) and the variability in the parameters estimation (a, σ ). Unfortunately, 
it is important to note here the stochastic behaviour of the simulations. Therefore, from one simulation to 
another the differences may become more or less significant.

4.3 Analysis of the Phenomena Variance

The statistical bootstrap can provide pertinent information in the interest of understanding the impact velocity 
effect on the precision of the perforation probability estimation. The standard deviation of the experimental 
distribution quantify the estimation uncertainty. Figure 4 presents the evolution of the experimental and numer-
ical standard deviation as a function of the bullet impact velocity. The penetration process is governed by the 
balance between the bullet performances and the target resistance. It is expected that for low impact velocities 
the target resistance is dominant. Accordingly, the variability in the system response is low. As impact velocity 
increase, this balance is reached (around the V50 velocity). Then, a high dispersion in the system response can 
be seen. Instead, for high impact velocity the bullet performance increases and consequently the phenomena 
reaction tends to become more repetitive. This is the physical interpretation of the curve shapes depicted in 
figure 4 . The numerical model presents the same behaviour as the experimental one with a higher variability 
which surely include an amount that is inherent to Monte Carlo simulations. Finally, the model reproduce 
again the experimental observation and unfortunately, a larger experimental sample can allow a better analysis
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Figure 3. Experimental and numerical histograms of the perforation probability in class 4 of table 1.
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Figure 4. The distribution standard deviation as a function of the bullet impact velocity.

of the model consistency (more confidence is affected to experimental results and the irregular behaviour for
Vi = 535 m s−1 will be attributed to the model weaknesses).

4.4 Difference in Proportions

In order to further analysis the accuracy of the Brownian motion approach, the variability of the numerical
distribution is studied. In fact, if the experimental distribution is considered as representative of the observed
system, the bias of the numerical model can be measured by the difference: p̂ = F̄simi

− F̄expi
(the bar sym-

bol is used to define the mean of the distribution of the expectations F̂simi
and F̂expi

). It was shown that the
two distributions have almost the same shape, hence the variability of the bias is an indicator that reflect the
numerical model accuracy regarding the experimental one which is considered as the reference value in this
analysis. The models parameters uncertainty is accounted for by uniformly selecting the couple (a, σ) from
their associated intervals. Figure 5 displays the distribution of p̂ based on 100 samples of numerical and ex-
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Figure 5. Density function of the differences in proportions of the classes 2,3,4,5 and 6 of table 1.
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perimental distribution per class of the fifth observed classes. In addition, table 2 summarize the characteristic
statistics of the displayed distributions. it can be seen that the Brownian motion estimation lies on a maximum

Table 2. First and second moments of the difference in proportions.
Class Fexp Mean(p̂) Std(p̂)

Class 2 0.0317 0.027 0.00027
Class 3 0.2477 -0.03 0.00047
Class 4 0.5854 0.013 0.00067
Class 5 0.8280 0.04 0.00037
Class 6 0.9178 0.057 0.00025

distance of ≈ 11% of the expected real value in the classes 3,4,5 and 6. However, in the second class, where
the perforation probability is very law, the error is considerably high and equal to ≈ 85%. However, table 2
and figure 5 confirm again the good performance of the model in the central class around the V50. This result
encourages the fact that the model can reproduce this phenomena. Therefore, the model parameter should be
better tuned in the goal of seeking the best accuracy and precision in relation to experimental observations in
all the classes of impact velocities.

5 CONCLUSION

Ballistic response randomness has been modelled using the Brownian motion approach. Statistical inference
tools like Chi-square and Kolmogorov-Smirnov goodness of fit test has been implemented for model param-
eters estimation. However, this estimation is characterized by a given uncertainty. The actual work covered
the analysis of the model accuracy and sensitivity regarding this uncertainty. The inspection of the numerical
and experimental distributions of Fsimi and F̂expi showed that the model has a low sensitivity to the inference
uncertainty. The current study put in evidence the effect of the impact velocity on the model accuracy. Under
the assumption of constant parameters (the bullet deceleration and the diffusion coefficient), the stochastic
model has an excellent agreement with experimental results around the V50 velocity even with uncertainty
estimation included. As impact velocities shrink to extreme values some discrepancy start to appear between
the numerical and experimental results. Therefore, the main conclusion of this modelling approach is that it
has a good ability to reproduce the observed variability. However, more effort should be oriented to consider
the effect of the impact velocity in the model. So, the Brownian motion approach can reproduce the observed
randomness at any impact velocity.
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