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Abstract: Areal level spatial data are often large, sparse and may appear with geographical shapes that are reg-
ular (e.g., grid based climate model output) or irregular (e.g., postcode). Moreover, sometimes it is important
to obtain predictive inference in regular or irregular areal shapes that is misaligned with the observed spa-
tial areal geographical boundary. For example, in a survey the respondents were asked about their postcode,
however for policy making purposes, researchers are often interested to obtain information at the statistical
area level 2 (SA2) – a geographical area defined by the Australian Bureau of Statistics (ABS). This level of
geography is the lowest for which the ABS outputs population projections and migration data, and is used as
the basis for much of the spatial analysis undertaken in Australia. The statistical challenge is to obtain spatial
prediction at the SA2s, where the SA2s may have overlapped geographical boundaries with postcodes.

The study is motivated by a practical survey data obtained from the Australian National University (ANU)
Poll. Here the main research question is to understand respondents’ satisfaction level with the way Australia
is heading. The data are observed at 1,944 postcodes among the 2,516 available postcodes across Australia,
and prediction is obtained at the 2,196 SA2s. This paper develops a modelling approach to address the issue
with prediction or spatial interpolation at the SA2s, where postcodes and SA2s have geographical boundaries
that overlaps.

The proposed method also explored through a grid-based simulation study, where data have been observed
in a regular grid and spatial prediction has been done in a regular grid that has a misaligned geographical
boundary with the first regular grid-set. The real-life example with ANU Poll data addresses the situation of
irregular geographical boundaries that are misaligned, i.e., model fitted with postcode data and hence obtained
prediction at the SA2. A comparison study is also performed to validate the proposed method.

In this paper, a Gaussian model is constructed under Bayesian hierarchy. The novelty lies in the development of
the basis function that can address spatial sparsity and localised spatial structure. It can also address the large-
dimensional spatial data modelling problem by constructing knot based reduced-dimensional basis functions.
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1 INTRODUCTION

Data collected at a defined geographic boundary is termed as the areal data in geo-statistics (Banerjee et al.,
2014). For example, infant mortality data measured at a postcode or temperature data measured in a particular
grid generated from a climate model (e.g., general circulation models). It is often important to understand
the spatial prediction of the variable of interest in areal positions that is geographically different than the
observed areal geography. For example, data have been measured at postcodes, however spatial prediction
is required at the statistical area level 2 (SA2), which is a geographically defined area in Australia that has
an overlapped geographical boundary with postcode. The existing methods for modelling areal data with
misalignment problems are mainly focused on modelling spatial data from different areal units or combining
data from point-referenced and areal spatial units (Bakar et al., 2015, 2016; Gelfand et al., 2001), which is
also often known as the change-of-support problem (Cressie and Wikle, 2011). This way of viewing the
spatial misalignment relates to analyse the model with different misaligned units instead of providing spatial
prediction at the misaligned areal unit. Current paper aims to analyse sparse areal data and hence to predict
or interpolate the variable of interest in misaligned areal units. Hence, this paper views the problem in a
completely different way where the main intention is spatial prediction.

The Bayesian conditional autoregressive (CAR) models (Banerjee et al., 2014) are popular to analyse areal
data, which incorporates the areal spatial correlation through spatial process. For example, risk of having
a particular disease has been often spatially correlated and inclusion of a spatially correlated process in the
model provides benefits in addition to the covariates or predictor variables that may sometimes explain the
spatial variations (Lee et al., 2014). This is also true for climatic data measured at the grid level, where it
exhibits a strong spatial correlation (Crimp et al., 2015). In both situations, the variable of interest is measured
at the areal level (i.e., for disease risk it may be a postcode and for climatic variable – a defined regular grid) and
the Bayesian CAR models, a particular version of the Gaussian Markov random field (GMRF) can be used for
estimating model parameters and also predicting at the areal spatial scale (Cressie and Wikle, 2011). However,
it is often challenging to obtain spatial predictive inference at the misaligned or geographically overlapped
areal units based on the existing CAR modelling strategies. For example, in this situation, the spatial process
used for analysing the model is different than the spatial process used for obtaining prediction. This is due
to the different layouts of the spatial geographical boundaries used in model analysis and in prediction, and
therefore initiates to develop a novel modelling method to address the issue.

The rest of the paper is organised as follows: Section 2 provides the development of the modelling technique.
A simulation study is presented in Section 3, to test the applicability and comparative performance of the
proposed technique. Section 4 describes an application of the method to the Australian National University
(ANU) Poll survey data. Finally, Section 5 provides conclusions.

2 METHODS

This paper develops a method based on spatial basis functions that comprises properties of both the GMRF and
the Gaussian spatial random field. In particular, the Morans I basis (Hughes and Haran, 2013) and a Gaussian
spatial basis functions (e.g., bi-square, radial) are used. The Morans I basis function incorporates so many
properties that links with the GMRF, where the areal unit (e.g., grid, pixel, postcode, state) accounts for spatial
dependence through their neighbours. For example, the conditional probability of a signal in an areal unit
of a Markov random field depends on the signals in the neighbourhood through some weight neighbourhood
matrix. The neighbourhood matrix usually contains a binary structure depending on the boundaries shared by
the areal units, i.e., if two or more areal units share a common boundary then they are treated as one otherwise
zero (Lee et al., 2014). By contrast, the spatial Gaussian basis can be constructed by calculating the distances
between two spatial points, which is often more appropriate for modelling point-referenced data (Bakar and
Kokic, 2017). In this paper, the Moran’s I and bi-square basis functions are used to reflect a hybrid spatial basis,
which incorporates both GRMF and Gaussian random field to connect geographical boundaries for obtaining
predictions at misaligned areal units.

Figure 1 provides a conceptual flow-diagram of the modelling process implemented in this paper, where two
areal layers: layer-1 (6×6) and layer-2 (4×4) are defined. Suppose, layer-1 data is used to fit the model with
covariate information and then predict in layer-2 through the latent process (or layer) defined in the modelling
hierarchy. Note that layer-1 data may be sparse or may follow a localised clustering structure, which can be
addressed by the proposed modelling approach.
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Figure 1. Conceptual flow-diagram of the model using grid-based geographical layers. The layer 1 (6 × 6
grid) and 2 (4 × 4 grid) geographical boundaries overlap, and the latent spatial process (e.g., a 2 × 2 grid) is
used to link between the two layers.

2.1 MODEL DEVELOPMENT

Let us define y(Bi) be the continuous response from a survey at areal unit Bi, i = 1, . . . , n. The aim is to
obtain spatial prediction of the response y(B∗k) at areal unit B∗k , k = 1, . . . , n∗, where Bi and Bk are spatially
misaligned. Note that as discussed earlier, unlike the existing literature (Banerjee et al., 2014; Cressie and
Wikle, 2011), where the areal misalignment problem is addressed at the modelling stage, this paper initiates
to address it at the spatial prediction stage. The spatial model can be written as:

y = µ+ ε = Xβ + ω + ε, ε ∼ N(0, σ2I) (1)

where, µ = (µ(Bi), . . . , µ(Bn))′ is the mean and σ2 is the variance of the white-noise ε =
(ε(B1), . . . , ε(Bn))′. The term X is an n × p design matrix, β is a p × 1 parameter vector, and ω =
(ω(B1), . . . , ω(Bn))′ is the spatially correlated areal process. The CAR model is a popular choice for the
spatial areal process ω ∼ N(0, τ2S−1), which is a particular form of the GMRF (Banerjee et al., 2014). Here,
S is the precision matrix, contains a non-negative symmetric n×n neighbourhood matrix W that controls the
spatial autocorrelation structure of the spatial process. The W matrix includes zero and one binary structure
based on geographical contiguity. The CAR model is commonly specified as a set of n univariate full condi-
tional distributions π(ωi|ω−i), i = 1, . . . , n where ω−i = (ω(B1), . . . , ω(Bi−1), ω(Bi+1), . . . , ω(Bn))′. It
is important to note that a discretely indexed spatial approach (e.g., CAR model) for the spatial process ω may
exhibit smoothing variations due to the selection of the neighbourhood weight matrix W . Here a geographical
region with small geographical boundary size is treated as the same as an area with larger geographical bound-
ary. A localised adaptive approach of choosing the W matrix can aid this problem (Lee et al., 2014), however
predicting the localised spatial effect at misaligned areal units (e.g., B∗k , k = 1, . . . , n∗) with overlapping
geographic boundaries is often challenging.

The use of the Moran’s I basis function is beneficial in this context to represent the discretely indexed spa-
tial random field, which is aimed to solve the collinearity between the fixed effect estimates and the CAR
process (Hughes and Haran, 2013; Reich et al., 2006). This way of defining the correlated process initiates
sampling from a multivariate full conditional distribution of ω. In the situation of a large number of areal
units, the problem arises on inverting the large n × n spatial covariance matrix with O(n3) computational
complexity. Importantly, the Moran’s I approach can aid the large spatial data problem through dimension
reduction (Bradley et al., 2016), where a smaller number of knot points r(< n) is considered in the discrete
spatial random field to represent the reduced-dimension. Similarly, a reduced dimensional method (e.g., fixed
rank Kriging) can be applied in the continuous Gaussian spatial field using spatial basis functions such as
wavelet, radial, bi-square (Cressie and Johannesson, 2008; Nychka et al., 2015). Here, the knot points are
defined in the continuous Gaussian spatial field.
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This paper defines the spatially correlated process ω as a function of the Moran’s I and bi-square basis func-
tions. Hence, the spatial process ω is written as:

ω = Λδ + η, η ∼ N(0, σ2
ηI), (2)

where, Λ = M × R is a basis function that includes an n × n matrix of eigenvectors M of the Moran’s I
operator matrix M(W ), and the lower-dimensional n× r bi-square basis function R. Following Bradley et al.
(2016), we write the Moran’s I operator matrix as:

M(W ) = (I−X(X′X)−1X′)W (I−X(X′X)−1X′) (3)

where, I is an n × n identity matrix, and W is the n × n nearest neighbour weight matrix contains zeros
and ones. The term η ∼ N(0, σ2

ηI) is an i.i.d. error process that captures the remaining random compo-
nent. Hughes and Haran (2013) reduced the Moran’s I basis function into a lower dimension for achieving the
spatial dimension reduction. However, following Reich et al. (2006) this paper includes the full dimension
(i.e., n×n) of the spectral decomposition of M(W ) and proposes the reduction of spatial dimension using the
bi-square basis functions (Cressie and Johannesson, 2008). Hence, r(< n) knot points are defined to design
the n × r bi-square basis matrix R. The basis R(Bij), i = 1, . . . , n, j = 1, . . . , r is constructed using the
distances between the centroid of the areas and the knot points. Thus the n × r spatial basis Λ includes both
discrete neighbourhood phenomenon of the geographical areas (i.e., M ) and their distances through bi-square
basis (i.e., R). It is always challenging to select the number and position of the knots for defining R (Sahu
and Bakar, 2012). This paper considers a regular grid for selecting the knot positions and the number of knot
points r is selected based on a compromising choice between the improved accuracy and the computational
efficiency of the model (Sahu et al., 2015).

The lower dimensional vector process δ defined in eq. (2) is assumed to have a zero mean and lower dimen-
sional r×r covariance matrix Σ. A smoothing parameter φ is used to define Σ and is written as: Σ = φ×Λ′QΛ.
The term Q is defined as Q = diag(W1) −W , where 1 is a vector of ones. With a spectral decomposition
of Λ′QΛ, we write Σ = ΨQ(φ × ΦQ)Ψ′Q, where ΨQ is an orthogonal matrix of order r × r and ΦQ is a
diagonal matrix. Bradley et al. (2016) used a prior distribution on ΨQ; however, this paper assumes that the
eigenvectors of Σ and its eigenvalues are known up to a multiplicative constant (Hughes and Haran, 2013).

2.2 Posterior

The joint posterior distribution of the data, processes and parameters of the proposed model is represented as
a product of the following conditional distributions:

Data Model: y
∣∣µ, σ2 ∼ N

(
µ, σ2In×n

)
,

Process Models: µ |φ ∼ Gaussian
(
xβ + Λδ, σ2

ηIn×n
)
, δ |φ ∼ Gaussian(0,Σ),

Parameter Models: β ∼ Gaussian
(
µβ , σ

2
βIp×p

)
, σ2 ∼ Inverse-Gamma(aε, bε),

σ2
η ∼ Inverse-Gamma(aη, bη), φ ∼ Inverse-Gamma(aφ, bφ),

where, σ2 > 0, σ2
ε > 0 and φ > 0. We use proper and non-informative prior distributions for β by setting

µβ = 0 and σ2
β = 1010. For the hyper-parameters of the inverse-gamma prior distributions, we set aε =

aη = aφ = 2 and bε = bη = bφ = 1, as the Inverse-Gamma(2, 1). The Markov chain Monte Carlo
(MCMC) sampling algorithm is used with the R programming language and the just another Gibbs sampler
(JAGS) (Plummer, 2003) computational platform to obtain estimates of the model parameters and hence spatial
predictions. Detail code are provided as a supplementary material.

2.3 Prediction

Let us define a geographical area B∗k , k = 1, . . . , n∗ where we want to obtain prediction that has overlapped
geographical boundary with the area where we observe data Bi, i = 1, . . . , n. The predictive posterior distri-
bution for y(B∗k) at B∗k can be obtained by solving the following integral.

π (y (B∗k) |X∗,Λ∗ ) =

∫
π (y (B∗k) |µ∗,θ )× π (µ∗ |X∗,Λ∗,θ )× π (θ |x∗ ) dµ∗dθ;

where, X∗ is the design matrix at B∗k . We define the term θ = (β, δ, φ, σ2, σ2
ε )′ and the term Λ∗ = M∗×R∗.

Note that the neighbourhood weight matrix W ∗ is calculated from B∗k , k = 1, . . . , n∗.
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3 SIMULATION: A COMPARATIVE STUDY

A simulation study is used to demonstrate the sensitivity and predictive performance of the proposed model.
The model is compared with the Moran’s I basis function model (Hughes and Haran, 2013). Regular and
overlapping grids are used in this context. The knot sizes are also assumed to be same for both models. For
example, it is often ideal to use 10% (Hughes and Haran, 2013; Bradley et al., 2016) of the total number of
spatial units (n) as the number of knots (r) for reducing the dimension for Moran’s I method. Hence, 10% of
the n is considered as r in this paper for defining the knot size for the bi-square basis function. A sensitivity
analysis on different knot sizes is also performed in this context.

Two sets of 30 × 30 and 20 × 20 overlapped grids are considered, where 30 × 30 is used to fit the model
and then predicted in 20 × 20. A total r = 85 knot points (about 10 percent of the 900 grids) are used for
constructing the spatial basis function. Let us denote the 30 × 30 as lattice–1 and 20 × 20 as lattice–2. Two
predictor variables are simulated from a standard normal distribution, and the response variable is constructed
correspondingly. Note that lattice–1 is used for model fitting and model based spatial predictions are obtained
in lattice–2, that has an overlapped boundary with lattice–1. The true simulated population measurements are
stored to compare the model output in lattice–2.

Comparison of the proposed and the Moran’s I model are then obtained based on their predictive performance.
The root mean squared error (RMSE) and deviance information criterion (DIC) (Spiegelhalter et al., 2002)
are used as the model comparison criteria. The proposed model shows a lower DIC value (1780.81) and
RMSE estimate (0.27) compared to the Moran’s I model (DIC=1957.01, RMSE=0.35). Based on the summary
statistics it can be concluded that the proposed model performs better than the Moran’s I model for predicting
at the misaligned geographical boundaries.

Table 1. The validation criteria: root mean squared error (RMSE) with 95% Bayesian crediable interval, and
deviance information criterion (DIC) with measure of fit and corresponding penalty.

RMSE (95% Bayesian–CI) DIC (measure of fit + penalty)
Moran’s I model 0.3501 (0.2852,0.4397) 1957.01 (874.65+1082.36)
Proposed model 0.2712 (0.2150,0.3652) 1780.81 (593.24+1187.57)

4 APPLICATION: ANU POLL DATA ANALYSIS

The ANU Poll has been a nation-wide survey conducted three times each year. A pooled ANU Poll dataset
from June 2010 to October 2015 is used in this application. A Total of 13 surveys was conducted in this period.
One of the common questions in the surveys was on respondents’ satisfaction level with the way Australia is
heading. A total of 18,978 respondents was recorded at 1,944 postcodes in the pooled data among the 2,516
available postcodes across Australia, see Figure 2(a). The responses are then aggregated at the postcode level.
Although the individual survey data are in the Likert scale (Likert, 1932), i.e., 1 as very less satisfied and 5 as
the most satisfied; the aggregated average response at the postcodes refers to a bell–shape normal distribution.
The aggregated data are used for model fitting and then the spatial prediction of the average satisfaction level
is obtained at the SA2s – a spatially overlapped and misaligned geographical area with postcode. Figure 2(b)
represents 2,196 SA2s across Australia.

The socio-economic status of an area sometimes plays a key role to motivate the respondents’ satisfaction.
Hence, two SEIFA (Socio-Economic Indices for Areas) indices are used as predictors in the model: (1) IRSD
(index of relative socio-economic disadvantage) and (2) IEO (index of education and occupation)1. The pop-
ulation size (in logarithmic scale) at the areal unit is also considered as a predictor variable in the model.

Ten percent (i.e., r = 195) of the total postcodes (i.e., 1,944) is considered as the number of knot points (see
Figure 2). The knot positions are considered as grids. The MCMC summary statistics show that the predictor
variable IRSD does not have a significant statistical association with respondents’ satisfaction with the way
the country is heading. However, IEO and population size in each geographical area exhibit a positive and
statistically significant effect2. The variance parameters are estimated at 0.18 and 0.27 for the error process ε
and η respectively. The spatial smoothing parameter φ is estimated 1.02.
1http://www.abs.gov.au/ausstats/abs@.nsf/mf/2033.0.55.001
2Bayesian–CI: at 95% Bayesian crediable interval
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(a) POA (b) SA2 (c) SA2 (d) SA2

(e) Brisbane (f) Sydney (g) Melbourne (h) Adelaide

Figure 2. (a) Total 1,944 Postcodes in the ANU Poll data and (b) 2,196 postcodes across Australia, with 195
points used for defining the knots. (c) Model based predictive map of Australia at the SA2 level, (d) prediction
without adjusting spatial effects in the model. Model based predictive map at the SA2 level for Greater (a)
Brisbane (b) Sydney (c) Melbourne and (d) Adelaide.

Figures 2(c) and (d) show the model based predictions at the SA2s with and without spatial effects respectively.
Here, the spatial modelling contributes strongly to identify geographical variations over Australia. For exam-
ple, the Outback (SA2:406021141) in South Australia yields a higher average satisfaction level compared to
the prediction without adjusting the spatial effects in the model. Here, Outback – a large SA2 overlaps with ap-
proximately three large rural postcodes 5440, 5710 and 5731 in South Australia. Hence, prediction at Outback
using the proposed modelling technique captures the spatial variability much higher, which was not addressed
only by the predictor variables used in the model. Furthermore, the predictive maps are elaborated into small
scale for four major capital cities in Australia in Figures 2(e)–(h). The predicted average response of Greater
Adelaide shows a higher tendency of satisfaction, however Greater Sydney shows an overall lower level of
satisfaction compared to other capital cities in Australia.

5 CONCLUSIONS

This paper presents a Bayesian spatial Gaussian model to enable the prediction of areal data at overlapped and
misaligned geographical boundaries through a non-stationary hybrid spatial basis function. The hybrid spatial
basis combines the Moran’s I and bi-square basis functions. The approach addresses the big-n spatial problem
by considering a set of lower dimensional knots. The proposed method however, does not aim to address the
problem of confounding for spatial random processes, which is left as an extension.

The method is validated using a simulation study, where the applicability is tested using regular grid datasets.
The proposed model outperforms the Moran’s I basis function model. The model is then applied to the ANU
Poll survey data, where postcode information is used to obtain spatial predictive inference at the SA2 to
understand the distribution of respondents’ views towards the way Australia is heading.

The proposed model can be extended to accommodate non-Gaussian models and for addressing spatio-
temporal data. It is often important in many research situations to understand the effects of some key variables
among a vast list of predictors (George and McCulloch, 1993; Tibshirani, 1996). Hence, the proposed model
can be extended to address this problem.
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