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Abstract: Exposure to air pollution has been extensively associated with adverse health effects, including 
cardiovascular illness and premature mortality. To reduce the risk of exposure, Australian state governments 
develop candidate mitigation strategies outlining specific actions and interventions to reduce emissions of, and 
exposure to, air pollutants. However, a common challenge in air quality management lies in selecting the 
optimal control strategies from a potentially broad range of candidate strategies to mitigate exposure whilst 
adhering to budgetary requirements and national air quality standards. The complexity of this challenge is 
further compounded by the many different, incomparable types of uncertainty inherent to air quality analyses.  

To this end, optimisation models have been a commonly used tool in air quality management. However the 
majority of optimisation models presently available in the literature typically focus on minimising 
implementation costs alone, with limited consideration of uncertainty in model parameters.  

In this paper, a theoretical optimisation model is formulated and solved to accommodate for uncertainty to 
some extent in model parameters and the optimal solution. The developed model is applied in an air pollution 
context to identify cost-effective strategies to potentially reduce pollution exposure, with the objective of 
maximising the estimated societal health benefits, rather than implementation costs alone, under uncertainty. 
Within the model, the inherent spatiotemporal uncertainty of emission analyses can be represented, to an extent, 
through the combination of traditional linear programming techniques with the principles of fuzzy logic. This 
is an attractive modelling approach as fuzzy logic allows for imprecise model parameters.  

The developed model is solved using a fuzzy linear complementary problem approach with Lemke’s pivoting 
algorithm. The numeric model output is complemented with maps of the model results, including health impact 
maps showing the expected number of adverse health episodes potentially avoided through the implementation 
of the optimal solution. These maps allow for simple, quick interpretation of the model results and easy 
identification of areas with the greatest, and least, potential for health impact.  

The use and format of model results are demonstrated through an application to Adelaide, South Australia, 
under sample emission scenarios. The performance of the developed fuzzy model is evaluated through a 
comparison against the corresponding ‘crisp’ model wherein all model parameters are assumed to be precisely 
defined. The results indicate that the fuzzy model is able to identify a cost-effective control strategy, or 
combination of strategies, to potentially reduce pollution exposure within the limited context of the sample 
application. Results are consistent between the developed fuzzy model and the corresponding crisp model 
however the fuzzy model has the additional advantageous feature of representing parameter uncertainty to 
some extent through the provision of upper and lower limits on the model results.  

There are complex processes beyond the scope of the developed theoretical model which impact on emission 
analyses. However the developed optimisation model is a step towards an accountable framework for air 
quality managers to aid the selection of cost-effective mitigation strategies that maximise the health benefits to 
society while accommodating, to an extent, for the associated uncertainty. 
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1. INTRODUCTION 

Exposure to traffic-related air pollution has been extensively associated with adverse health effects, including 
diabetes incidence, impaired lung function and growth, cognitive impairment and premature mortality 
(Gauderman et al., 2004; Power et al., 2011; Raaschou-Nielsen et al., 2013). According to the World Health 
Organisation, ambient outdoor air pollution was responsible for 3 million premature deaths in 2012 (World 
Health Organisation, 2017). To mitigate the risk of exposure to harmful air pollution and protect public health, 
air quality managers develop exposure mitigation strategies outlining specific actions and interventions to 
reduce air pollution concentrations. A prominent challenge in air quality management therefore lies in the 
selection of the most economic and effective control strategies from a potentially broad range of candidate 
strategies. This challenge is further complicated by local emission targets and budgetary constraints, which 
impact the control strategy selection process, as well as the many different types of incomparable uncertainty 
inherent to air quality analyses (Oxley and ApSimon, 2011). For example, sources of uncertainty in air quality 
analyses include, but are not limited to, the estimated efficacy and cost of a candidate control strategy as well 
as the associated expected health impact, which may not be explicitly quantifiable or fully realised prior to 
implementation. Moreover, estimated air pollution concentrations are typically based on mathematical models 
which are inherently subject to uncertainty (Schultz, 2016). A detailed conceptualisation of the many different 
sources of uncertainty which arise in air quality analyses can be found in Oxley and ApSimon (2011). 

To aid air quality managers in selecting economic and effective mitigation strategies, a number of optimisation 
models are available in the literature (Liu et al., 2003; Lv et al., 2011; Qin et al., 2010; Sonawane et al., 2012). 
These models have differing levels of complexity however are typically formulated to minimise the costs 
associated with implementation of each candidate control strategy. At the time of this research, there are limited 
models available which explicitly account for the expected health benefits associated with each control strategy 
whilst handling and representing the uncertainty in model parameters. This is an important consideration in air 
quality cost-benefit analyses as the control strategies with the lowest implementation costs may not be as 
effective at reducing long-term incidence rates of adverse health outcomes as more costly control strategies, 
leading to an increase in long-term health expenses (Schultz, 2016). Moreover, accommodation of uncertainty 
in the model is imperative to ensure air quality management decisions are well-informed and accountable. 

In this paper, a new theoretical optimisation model is formulated and solved in the presence of uncertainty with 
applications to selecting optimal control strategies to potentially mitigate air pollution exposure. The objective 
of the developed model balances the trade-off between implementation costs and the expected health benefits 
to society. This objective has been established on the basis of the optimisation model proposed in Sonawane et 
al. (2012), in which health benefits to society are a key model parameter in identifying optimal control 
strategies for traffic-related air pollution. A distinguishing feature of the developed fuzzy health benefits model 
lies in the combination of traditional optimisation techniques with fuzzy logic, used to represent the uncertainty 
associated with model parameters to some extent. Fuzzy optimisation is an attractive modelling choice as it 
allows model parameters to be imprecise, such as monetary values which are subject to frequent temporal 
variation. It should be noted that there are a number of complex processes impacting air pollution emissions 
and exposure that are beyond the scope of the present research. The developed fuzzy model is therefore a step 
towards an accountable framework for the management of air quality which accommodates for uncertainty.  

The layout of this paper is as follows. First, preliminary information on the concept of a fuzzy number is 
provided in Section 2, with these concepts then applied in Section 3 to formulate the fuzzy health benefits 
optimisation model. The method used to solve the developed fuzzy optimisation model is described in Section 
4, followed by a demonstration of the model use and format of the results through an application to Adelaide, 
South Australia, with two theoretical control strategies in Section 5. Conclusions are drawn on the performance 
of the developed fuzzy optimisation model in Section 6. This research was conducted as part of the doctoral 
dissertation of the lead author, and the interested reader can find further details on this work in Schultz (2016). 

2. PRELIMINARIES 

The fuzzy optimisation model developed here combines traditional optimisation techniques with the principles 
of fuzzy logic to represent uncertainty in model parameters. A number is considered to be ‘fuzzy’ if it is 
imprecisely defined and is supported over a finite interval of numbers (Lai and Hwang, 1992). For example, 
health effect estimates associated with air pollution exposure are commonly reported as a mean effect estimate ̅ݔ	with an accompanying 95% confidence interval. This mean effect estimate ̅ݔ can be considered as a fuzzy 
number supported over the finite interval spanned by the 95% confidence interval.  

A general fuzzy number is denoted ܣሚ = (ܽଵ, ܽଶ, ܽଷ), with ܽଶ representing the centre of the fuzzy set and ܽଵ 
and ܽଶ as the lower and upper bounds of the fuzzy set, respectively. Here, the ~ accent indicates that ܣ is a 
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fuzzy number. All fuzzy numbers have an accompanying membership function (ݔ)ߤ which maps ݔ ∈ Թ to the 
interval [0,1], with values of 1 indicating that ݔ is completely within the fuzzy set for ܣሚ and values of 0 
indicating that ݔ is not an element of ܣሚ. These membership functions can take a number of forms, depending 
on the context of the fuzzy number being represented. Following the established convention in the literature 
for numbers that are reported with an accompanying 95% confidence interval (Mesa-Frias et al., 2014), the 
triangular membership function has been used here, given by 

(ݔ)ߤ = ۔ۖەۖ
ۓ ฬ ݔ − ܽଵܽଶ − ܽଵฬ 							if	ܽଵ ≤ ݔ ≤ ܽଶฬ ܽଷ − ଷܽݔ − ܽଶฬ 							if	ܽଶ ≤ ݔ ≤ ܽଷ0															if	ݔ  ܽଷ	or	ݔ ≤ ܽଵ. (1) 

Here, ܽଵ and ܽଷ can be considered to be the lower and upper bounds of the 95% confidence interval, 
respectively, with ܽଶ as the mean effect estimate. As an example, Hansen et al (2012) report an increase of 
4.48% in the odds of cardiovascular hospital admissions during cool seasons for a 10 ߤg/mଷ increase in ambient 
particulate matter, with a 95% confidence interval of (0.74%, 8.36%). A fuzzy representation of this effect 
estimate is ܣሚ = (0.74, 4.48, 8.36), with (4.48)ߤ = 1 and (0.74)ߤ = (8.36)ߤ = 0, as shown in Figure 1.  

In the developed fuzzy optimisation model, fuzzy numbers are 
used to represent uncertain model parameters. A critical 
component in this optimisation model lies in the comparison of 
two fuzzy numbers to ensure model constraints are satisfied. In 
practice, the comparison of two fuzzy numbers is achieved 
through the use of a ranking function ࣬  mapping a fuzzy number 
to the real line Թ (Mottaghi et al., 2015). A number of ranking 
functions are available in the literature, each of which satisfy the 
following properties (Mottaghi et al, 2015): for two fuzzy 
numbers ܣሚ and ܤ෨ ሚܣ ,  ෨ܤ  if and only if ࣬൫ܣሚ൯  ࣬൫ܤ෨൯; and  ܣሚ = ෨ܤ  if and only if ࣬൫ܣሚ൯ = ࣬൫ܤ෨൯. Here, the ranking function 
of Facchinetti et al (1998) is used, where 

࣬൫ܣሚ൯ = ܽଵ  2ܽଶ  ܽଷ4 . (2) 
This is a flexible ranking function that is particularly sensitive to the spread of a fuzzy number and allows for 
the comparison of a fuzzy number with a crisp, precisely defined number. The interested reader can find further 
technical details on the theory and use of fuzzy numbers in Lai and Hwang (1992).  

3. FORMULATION OF THE FUZZY HEALTH BENEFITS OPTIMISATION MODEL 

The developed fuzzy health benefits optimisation model is formulated to select the optimal exposure mitigation 
strategy, or combination of strategies, to reduce the potential for population exposure to traffic-related air 
pollution in the presence of uncertainty. The objective of the developed model therefore balances the trade-off 
between the costs associated with implementing the candidate control strategies and the resulting economic 
value of the health benefits to society, with the uncertainty inherent to emission analyses and health impact 
assessments captured using the principles of fuzzy logic (§2). The use of fuzzy logic allows parameter estimates 
to be imprecise or not fully realised, such as monetary values which are subject to frequent temporal variation.  

In the objective function of the optimisation model, the economic health benefits to society are estimated by 
combining the expected number of adverse health incidents avoided as a result of each candidate control 
strategy with the economic value of an individual episode of each health endpoint. First, the expected number 
of avoided adverse health incidents is estimated using a concentration-response function, ݕ߂(ℎ; ;ℎ)ݕ߂  ,(ݔ (ݔ = ൫1ݔ − ݁ିఉ෩௱ெ൯ܫܲ. (3) 
Here, ݔ is the proportion of implementation of control strategy ݅, to be determined by the developed 
optimisation model, ܯܲ߂ is the expected change in air pollution associated with the ݅௧ candidate control 
strategy, ܫ is the baseline incidence rate of adverse health endpoint ℎ and ܲ	is the total population in the area 
of analysis. Following convention in the literature, particulate matter (PM) is used as the target pollutant in the 
developed optimisation model (Abt Associates Inc., 2012; Hansen et al., 2012; Simpson et al., 2005). 

Figure 1. Example fuzzy representation of 
a mean effect estimate and the 

accompanying 95% confidence interval. 
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Additional pollutants can be added to the model subject to the needs and interests of the users. The interested 
reader can find further technical information on the derivation of model parameters in Schultz (2016). 

In (3), the ߚ෨ coefficient is the key parameter governing the accuracy and reliability of the resulting estimated 
number of avoided health incidents. This coefficient represents the relationship between a one unit change in 
ambient air pollution levels and the incident rate of health effect ℎ. There are a number of studies available in 
the literature for deriving ߚ෨ coefficients, however the corresponding values of ߚ෨ differ substantially 
depending on the location and assumptions of the parent study (Schultz, 2016). As such, the ߚ෨ values used 
here were sourced from a recent domestic study of the risks associated with air pollution exposure (Golder 
Associates, 2013). These ߚ෨ values were compiled based on meta-analyses of high calibre domestic and 
international research and are therefore considered best practice for use in the developed optimisation model 
in estimating the number of health incidents avoided through the candidate control strategies. To capture the 
uncertainty in health estimate effects, the ߚ෨ values were represented as fuzzy numbers, using the 95% 
confidence intervals accompanying the mean effect estimates as the bounds of the fuzzy representation (§2). 

The associated cost benefits to society are then approximated by combining (3) with ෨ܸ, the monetary value of 
an individual episode of adverse health endpoint ℎ, and summing over all candidate control strategies  ݅ = 1,… , ݊ and health endpoints of interest, ℎ = 1,…  as follows ,ܪ,

ݏݐ݂ܾ݅݁݊݁	ݐݏܥ =ݔ൫1 − ݁ିఉ෩௱ெ൯ܫܲ ෨ܸு
ୀଵ


ୀଵ . (4) 

Assigning a monetary value ෨ܸ to an individual episode of an adverse health endpoint ℎ is a complex, uncertain 
process as there are a number of costs associated with impaired health. These costs include direct medical 
expenses as well as the less tangible costs associated with personal suffering (Department of Environment and 
Conservation, 2005). The values of ܸ ෨ used in the development of the fuzzy health benefits optimisation model 
were sourced from a number of recent major Australian studies (Australian Safety and Compensation Council, 
2008; Boulter and Kulkarni, 2013; Department of Environment and Conservation, 2005). To accommodate for 
the inherent uncertainty, monetary valuations of health effects are typically reported as 95% confidence 
intervals which are used here to represent the monetary estimates as fuzzy numbers (§2). 

Using the expected health benefits to society calculated in (4), the objective function of the developed fuzzy 
health benefits optimisation model has been formulated as 

max௫ഢ෦ ൝ݔ൫1 − ݁ିఉ෩௱ெ൯ܫܲ ෨ܸ − ுܥݔ
ୀଵ


ୀଵ ൡ . (5) 

Here, ݔ are the decision variables over which the maximisation is performed, representing the proportion of 
implementation of the ݅௧ control strategy for ݅ = 1,… , ݊, with ܥ representing the associated implementation 
costs. Thus the objective function maximises the overall benefits to society by maximising the difference 
between the estimated health benefits from (4) and the implementation costs of each candidate control strategy. 
In (5), the max෦  operator indicates that this maximisation involves fuzzy parameters, with the uncertainty 
associated with the model parameters represented throughout the optimisation procedure.  

3.1. Model Constraints  

The developed fuzzy health benefits model has been formulated with three example model constraints relating 
to the total budget, emissions targets and standard non-negativity constraint. These are summarised as below. 

1. A fuzzy budgetary constraint ensures that the cost ܥ of implementing each candidate control strategy ݅ 
does not exceed the available budget ܤ෨ . This constraint is formalised as fuzzy as the available budget may 
not be finalised prior to the selection of candidate control strategies, ܥݔ

ୀଵ ≤ .෨ܤ (6) 
2. An emissions target constraint to ensure that the reduction in ambient air pollution ܯܲ߂ achieved as a 

result of the ݅௧ candidate control strategy is below a given emissions reduction target ܧ,   ܯܲ߂
ୀଵ ≤ .ܧ (7) 

102



Schultz et al., A Fuzzy Optimisation Model for the Mitigation of Air Pollution Exposure 

3. Standard non-negativity constraints to ensure that the optimal implementation proportions ݔ identified by 
the fuzzy health benefits optimisation model are valid and sensible. That is, 0 ≤ ݔ ≤ 1 for all ݅ = 1,… , ݊. 

In practice, the developed health benefits model is flexible in terms of model constraints however, with users 
able to add or remove constraints as needed (Schultz, 2016).  

4. METHOD OF SOLUTION FOR THE FUZZY HEALTH BENEFITS OPTIMISATION MODEL 

The landscape of solution algorithms for optimisation models which include fuzzy parameters is narrow and 
highly sensitive to the role of the fuzzy parameters in the model (Lai and Hwang, 1992). In the developed fuzzy 
health benefits optimisation model, both the objective function and model constraints have fuzzy parameters. 
This type of fuzzy model, where both the objective function and decision space are subject to uncertainty, can 
be readily solved using the method proposed in Mottaghi et al. (2015). This method first reformulates the fuzzy 
health benefits optimisation model as a fuzzy linear complementary problem (Mottaghi et al., 2015), which is 
then solved using Lemke’s complementary pivoting algorithm (Lemke, 1968). The interested reader can find 
complete technical details on this method of solution in Mottaghi et al. (2015) and Schultz (2016).  

5. SAMPLE DEMONSTRATION OF MODEL USE 

In this section, the use and output of the developed fuzzy 
optimisation model is demonstrated through a theoretical analysis 
of Adelaide, South Australia (Figure 2). The results of the fuzzy 
model are compared and contrasted with the crisp alternative 
model wherein all model parameters are assumed to be precisely 
defined integer values. In the crisp model, only the central 
estimates for the fuzzy model parameters are used, corresponding 
to the mean effect estimates with the uncertainty of the mean effect 
estimates not featuring in the crisp model.  

Figure 2 shows the 50ൈ50 km2 case study area which has been 
divided into 1 km2 grid cells, with the developed fuzzy health 
benefits optimisation model, and the corresponding crisp model, 
applied separately in each cell to determine the optimal 
implementation proportions for two candidate control strategies. 
These strategies have been selected for illustrative purposes, with 
Control Strategy 2 achieving a greater reduction in emissions 
 at a greater cost than Control Strategy 1. Here, the values (ܯܲ߂)
of ܯܲ߂ were estimated by first estimating the reduced vehicular 
emissions of traffic-related air pollutants in the case study area 
under each control strategy, with The Air Pollution Model 
(TAPM) then used to estimate the corresponding ambient air pollution concentrations at baseline as well as 
under each control strategy (Schultz, 2016). Further technical details are available in Schultz (2016). 

A selection of notable results from the crisp and fuzzy optimisation models are shown in Table 1 and Table 2, 
respectively. These results correspond to the grid cells in rows 31 – 34 and 38 of column 21 of the case study 
area (orange rectangle, Figure 2). For each grid cell, Table 1 and Table 2 provide the optimal implementation 
proportions of Control Strategies 1 and 2 and the value of the objective function for the crisp and fuzzy 
optimisation models, respectively, representing the expected societal health benefits. For example, from the 
crisp version of the health benefits model (Table 1) it can be seen that in the area corresponding to column 21 
and row 31, the optimal solution is to implement 26% of Control Strategy 2 only. The corresponding health 
benefits to society is expected to be $1,341 in that area. Similar results were obtained from the fuzzy health 
benefits model (Table 2), however with the optimal solution and objective function represented as fuzzy 
numbers1. The central estimates of the fuzzy optimal solutions ݔ∗ for ݅ = 1,2, and the corresponding value of 
the objective function ̃ݖ∗ exactly match the optimal solutions of the crisp model results. However as the fuzzy 
model accounts for uncertainty, these optimal solutions are reported as uncertain, fuzzy numbers. 

                                                           
1Note that in Table 2, the fuzzy numbers ݔ∗, for ݅ = 1,2, represent proportions. As such, the lower limits that are less than zero should be 
considered as zero and the upper limits greater than one should be treated as one to ensure the results are meaningful.  

Figure 2. Distribution of the population 
in the case study area used to demonstrate 
the developed fuzzy optimisation model.  
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Table 1. Select case study results from the crisp optimisation model, where ݖ∗ is the value of the objective 
function and ݔ∗ is the optimal implementation proportion of the ݅௧ Control Strategy, for ݅ = 1,2. 

Col. Row Population ࢞ ∗ࢠ∗ ∗࢞   

21 31 1752 1341 0.000 0.26 
21 32 1861 1193 0.000 0.24 
21 33 2171 1052 0.000 0.21 
21 34 2173 920 0.000 0.21 
21 38 0 0 0.000 0 

Table 2. A selection of results from the case study for the fuzzy health benefits optimisation model. Here, ̃ݖ∗ = 	 ,∗ଵݖ) ,∗ଶݖ  ଷ∗) is the value of the fuzzy objective function and the optimal implementation proportions ofݖ
Control Strategies 1 and 2 are given by ݔ∗ = 	 ∗,ଵݔ) , ∗,ଶݔ , ∗,ଷݔ ), for ݅ = 1,2. 

Col. Row Population ࢠ∗ ࢞∗ ∗࢞   

21 31 1752 (-31295, 1341, 33933) (0.000, 0.000, 0.000) (-5.72, 0.26, 0.623) 

21 32 1861 (-27081, 1193, 29426) (0.000, 0.000, 0.000) (-5.22, 0.24, 5.70) 
21 33 2171 (-25452, 1053, 27519) (0.000, 0.000, 0.000) (-4.77, 0.21, 5.19) 
21 34 2173 (-20265, 920, 22070) (0.000, 0.000, 0.000) (-4.32, 0.21, 4.73) 
21 38 0 (0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.00, 0.00, 0.00) 

 
The fuzzy results in Table 2 have a large spread between the upper 
and lower limits relative to the magnitude of the central estimate. 
This large variation is attributable to the high degree of uncertainty 
attached to the model parameters and is therefore an artefact of the 
present hypothetical model application. Future applications of the 
developed fuzzy model using less variable fuzzy input parameters 
expected to produce more precise optimal solutions (Schultz, 2016).  

The developed fuzzy model also forecasts the expected health 
impacts associated with the optimal solution, with Figure 3 showing 
the expected health impact for the present case study. Here, the 
expected health impacts are greatest in the mid-north and less 
pronounced to the south and west. This is likely attributable to the 
population size of these areas as health impacts are calculated based 
on population density (4). Overall, the health impact is low however 
this is a result of the two sample control strategies considered here.  

Thus, the developed optimisation model has successfully identified 
optimal combination of control strategies within the limited context 
of the sample application, providing numeric results which represent 
the uncertainty inherent to emission analyses to an extent.  

6. CONCLUSIONS 

In this paper, a theoretical fuzzy optimisation model has been formulated, with applications to an air pollution 
context. The objective function of the model is to maximise the estimated, uncertain health benefits to society 
while accommodating for uncertainty in model parameters, to some extent, using fuzzy logic. This is a 
distinguishing feature of the developed model as many currently available models for air quality management 
focus on implementation costs only, with limited consideration of uncertainty. However, health effects are an 
important consideration as low-cost control strategies may not necessarily provide the greatest health benefits, 
leading to an increase in long-term health expenses. The consideration of uncertainty is also imperative to 
ensure conclusions formed on the basis of the model are well-informed. 

The use of the developed fuzzy optimisation model has been demonstrated through a sample application in 
Adelaide, South Australia. The results indicate that the fuzzy model is able to identify a cost-effective solution 
within the limited context of the sample application. Results are consistent between the developed fuzzy model 
and the corresponding crisp model, however the fuzzy model has the additional advantageous feature of 
representing parameter uncertainty to some extent through the fuzzy representation of model results.  

It should be noted that there are a number of complex processes impacting air pollution emissions and exposure 
that are beyond the scope of the developed model. The fuzzy optimisation model should therefore be viewed 
as a theoretical model that is a step towards the establishment of an accountable, integrated air quality 
management framework through the accommodation for uncertainty in model parameters. 

Figure 3. Health impact map for the 
solution of the fuzzy model, showing the 

number of health episodes avoided. 
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