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Abstract: Spatial predictive information is essential for applications such as modelling, planning, risk 
assessment and decision making. Previous studies have examined the complex factors that affect the 
performance of various spatial interpolation methods including sampling density, data variation, spatial 
structure of data, spatial distribution of samples, data quality, secondary variables and interaction among 
these factors. Another potential source of error is the Spatial Reference System (SRS) according to which the 
spatial information is stored. All SRSs generate spatial distortions of reality in some form, and this may 
impact on the accuracy of spatial predictions. Preliminary investigations into this issue found negligible 
differences in the predictive errors using different SRSs. However, these studies have tested regions restricted 
to the latitude extents of the Australian continent. The latitudinal gradient needs to be investigated for its 
effect on SRSs and any resulting impact on interpolation performance.  

This study examines the effects of ten different SRSs on spatial predictions using three datasets in regions 
spanning a long latitudinal gradient from approximately 10°S to 70°S. The study areas are located off the 
northern coast of Australia, southern coast of Tasmania, and on a section of the Antarctic coast. The tested 
SRSs consist of two geographic coordinate systems (i.e., WGS84 and GDA94), six map projections selected 
for minimal spatial distortion for datasets located in Australia (i.e., Equal-Area Azimuthal, Equidistant 
Azimuthal, Stereographic Conformal Azimuthal, Albers Equal-Area Conic, Equidistant Conic and Lambert 
Conformal Conic), and two map projections selected for minimal spatial distortion for datasets located in 
Antarctica (i.e., Australian Antarctic Lambert and Australian Antarctic Polar Stereographic). Continuous 
spatial predictions of seabed sand sediment information were built in the SRSs using two interpolation 
methods: inverse distance weighting (IDW) and ordinary kriging (OK). Prediction accuracy was measured 
using leave-one-out cross validation, and assessed in a number of error measures including relative mean 
absolute error and paired Mann-Whitney tests. 

The results show insignificant differences in predictive errors between all tested SRSs over the studied 
latitudinal gradient. This is the case for comparisons between WGS84 and GDA94, geographic coordinate 
systems and map projections, and map projection classifications. Insignificant difference was also observed 
between the map projections selected for Australia compared to the map projections selected for Antarctica, 
even when the Australian map projections were tested on the Antarctic study area and vice versa. There was 
a high level of variation in map distortion occurring between SRSs, but this did not equate to variation in 
interpolation error. It is argued that this is due to the nature of projecting data; distortion is applied 
consistently to all data points and thus the spatial relationship between data points is preserved in terms of 
their relative distance within the study area, resulting in similar prediction errors.  

The negligible levels of variation between SRSs in terms of predictive error suggest that WGS84 is sufficient 
for spatial predictive modelling. This removes the need for extensive projection selection and the associated 
transformation tasks, improving modelling efficiency.  

Keywords: Spatial Reference System (SRS), map projection, spatial predictive modelling, inverse distance 
weighting (IDW), ordinary kriging (OK), predictive accuracy 

 

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

106



Turner et al., Effects of SRSs on the Accuracy of Spatial Predictive Modelling along a Latitudinal Gradient 

1. INTRODUCTION 

Spatial data of environmental properties are often collected as sparsely distributed point samples. This is 
especially true in deep marine regions, where data collection is limited by time and resource constraints. 
Spatial interpolation techniques use point samples to predict unsampled locations, building a continuous data 
layer. These continuous predictive layers are essential for applications such as modelling, planning, risk 
assessment and decision making (Whiteway et al. 2007, Li et al. 2011, Pitcher et al. 2008). Therefore, it is 
important to seek improvements to the performance of spatial interpolation techniques which will lead to 
superior technical and scientific advice. Previous studies have examined the complex factors affecting the 
performance of various spatial interpolation methods. Li and Heap (2008) provide an in-depth discussion into 
the effects of sampling density, data variation, and sampling design on spatial interpolation methods. Further 
explored factors are the spatial structure of data, spatial distribution of samples, data quality, secondary 
variables, the correlation between primary and secondary variables, and interaction among these factors (Li 
and Heap, 2008, Li et al. 2011).  

Another factor which may influence spatial interpolation performance is the spatial reference system (SRS), 
in which the interpolating data is stored. SRSs are the frameworks which define locations on the surface of 
the earth, and may be either a geographic coordinate system (GCS), or a projected coordinate system (PCS), 
also known as a map projection (Jiang and Li, 2013). A GCS uses a three-dimensional spheroid 
approximately the shape of the earth, with angular units of measure to reference locations on the earth’s 
surface (Esri, 2016a). Map projections are the two-dimensional representations of the earth’s surface, used 
for creating maps (Snyder, 1987). 

Interpolation accuracy issues arise for both GCSs and map projections. Practical spatial interpolation 
methods assume input coordinates are uniform in distance. This is a problem in GCSs, which use longitude 
and latitude as input coordinates, as one degree of longitude at the equator has a greater distance than one 
degree of longitude near one of earth’s poles (Jiang and Li, 2013). Interpolation concerns also exist for map 
projections, as all map projections introduce distortions to spatial properties when transforming the non-
planar Earth onto a planar map (Tissot, 1881). Different classifications of map projections preserve certain 
spatial properties, while distorting others. Conformal projections persevere local shape, equal-area 
projections preserve area, equidistant projections preserve the distances between certain points, and 
azimuthal projections preserve direction from one point to all other points (Jiang and Li, 2014). The 
distortion of spatial properties also varies depending on the location on the map. Map projections are 
constructed with points (or lines) of contact which are tangential to the globe (Kennedy and Kopp, 2000). 
These points or lines are significant because they define the location of zero distortion. Generally, spatial 
distortion will increase with greater distance from the point of contact (Kennedy and Kopp, 2000). 

Preliminary investigations into these interpolation issues by Jiang and Li (2013) and Buckerfield et al. (2014) 
found negligible differences in the predictive errors between different SRSs. However, these studies have 
been restricted to the latitude extents of the Australian continent, and regions at more extreme latitudes have 
not yet been tested. Thus a further test is warranted. 

In this study we test the effect of different SRSs on interpolation predictions along a long latitudinal gradient. 
To accomplish this, four questions are investigated: (1) is there a difference in interpolation performance 
between WGS84 and GDA94 over the latitudinal gradient? (2) Is there a difference in interpolation 
performance between GCSs and map projections over the latitudinal gradient? (3) Is there a difference in 
interpolation performance between map projection classifications over the latitudinal gradient? (4) Is there a 
difference in interpolation performance between Australian and Antarctic map projections over the latitudinal 
gradient? 

2. MATERIALS AND METHODS 

2.1. Study Datasets 

This study was conducted using point samples of seabed sediment properties from the Marine Sediments 
(MARS) database (www.ga.gov.au/applications/marine-sediments-database) at Geoscience Australia. The 
MARS database contains detailed information on seabed sediments from over 300 marine surveys conducted 
in Australia’s marine jurisdiction, including the Australian Antarctic Territory (Heap, 2009). 

Three study areas spanning a long latitudinal gradient from 9°S to 69.4°S were selected: Northern Australia 
Region (NAR), Southern Tasmania Region (STR), and Australian Antarctic Region (AAR) (Figure 1). These 
locations were selected to allow testing over a long latitudinal gradient. Sediment samples in MARS were 
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extracted and cleaned for these three regions. The NAR dataset extent covers an area of 181 261 km2 with a 
total of 91 point samples. The STR dataset is the smallest study area, with an area of 82 181 km2 and 36 point 
samples. The AAR covers an area of 167 854 km2, with 138 points samples used for interpolation. 

 

Figure 1. Location of the three study areas (NAR, STR and AAR). Study areas were selected to span over a 
wide latitudinal gradient and where sufficient MARS data was available. 

2.2. Spatial Reference System Selection 

The selection of SRSs in this study was based on the previous work by Jiang and Li (2013). They performed 
an extensive selection process to find two GSCs and six map projections, suitable for continental Australia 
with a focus on the southwest Australian Exclusive Economic Zone (AEEZ). Buckerfield et al. (2014) used 
the same eight SRSs for their study focusing on the entire Australian Continent. The two GCSs are six map 
projections respectively were WGS84, GDA94, Albers Equal-Area Conic, Lambert Equal-Area Azimuthal, 
Lambert Conformal Conic, Equidistant Azimuthal, Equidistant Conic, and Stereographic Conformal 
Azimuthal. The six aforementioned map projections have points (or lines) of contact set to minimise 
distortion over the Australian continent and thus are referred to as Australian map projections in this study. 
However, to account for the AAR study area, a further selection process using Young's Rule (Young, 1920) 
and Snyder's decision tree (Snyder, 1987) was utilized to select two additional projections with points of 
contact set to minimise distortion in Antarctica: Australian Antarctic Lambert and Australian Antarctic Polar 
Stereographic. These two projections will be referred to as the Antarctic map projections. 

2.3. Spatial Interpolation Method Selection 

Two commonly used spatial interpolation methods were selected for this study: inverse distance weighting 
(IDW) and ordinary kriging (OK). These selections were based on their use in relevant past studies (Jiang 
and Li, 2013, Buckerfield et al. 2014) and common use in environmental sciences (Li and Heap, 2008, Li et 
al 2011, Li and Heap, 2011). 

2.4. Model Methods 

Three datasets were converted from WGS84 into a further nine SRSs, resulting in a total of 30 datasets. Two 
interpolation techniques, IDW and OK, were applied to each of the 30 datasets, building 60 spatial predictive 
models. The workflow for the two interpolation methods varied slightly, but was consistent for all SRSs and 
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study areas (Figure 2). For the OK models, an arcsine transformation was used to normalize the data, and the 
resultant predictions were then transformed back for the accuracy assessment (Li et al. 2011). 

 

Figure 2. The prediction model workflows varied slightly between interpolation techniques. 

The IDW model search window was set at 20 with a power parameter of 2. The OK search window was also 
set to 20, and a spherical model type was used. Model parameters, such as the lag size, nugget, partial sill and 
range were optimised using the Geostatistical Analyst Extension inbuilt function. This function is based on 
minimising the mean square error of the cross validation output (Esri, 2016b). 

The interpolation models were tested using leave-one-out cross validation. This test removes one data point 
at a time, and predicts the value for the removed point based on the remaining data points in the model (Esri, 
2007). These results are further explored with a variety of error measures to assist in the accuracy 
assessment. These measures consist of mean absolute error (MAE), root mean square error (RMSE), relative 
mean absolute error (RMAE), relative root mean square error (RRMSE) and variance explained by predictive 
models based on cross-validation (VEcv) (Li and Heap 2008, Li 2016 and Li 2017). Only the results of 
RMAE were reported in this paper due to space limitations; other measures are available in Turner et al. 
(2018). The differences in RMAE between WGS84 and all other SRSs were tested using paired Mann-
Whitney tests (R Development Core Team, 2016). 

3. RESULTS 

The predictive errors of the IDW and OK methods for each tested SRS over the three study areas in terms of 
RMAE and paired Mann-Whitney test (p-value) are presented in Table 1. The p-value was not included for 
GDA94 as its RMAE was consistently equal to WGS84. 

Table 1. The predictive errors in RMAE and the difference to WGS84 as the calculated p-value of the IDW 
and OK methods for each tested SRS over the three study areas.  

Spatial Reference System 

NAR STR AAR 

RMAE (%) P- value RMAE (%) P- value RMAE (%) P- value 

IDW OK IDW OK IDW OK IDW OK IDW OK IDW OK 

WGS84 31.18 32.73 - - 25.62 25.42 - - 45.67 46.37 - - 

GDA94 31.18 32.73 - - 25.62 25.42 - - 45.67 46.37 - - 

Albers Equal-Area Conic 31.04 32.64 0.33 0.88 24.87 25.59 0.06 0.74 45.65 45.80 0.84 0.06 

Lambert Equal-Area Azimuthal 31.17 32.72 0.36 0.13 24.92 25.50 0.01 0.51 46.12 48.51 0.38 0.13 

Lambert Conformal Conic 31.18 32.71 0.16 0.82 24.75 25.66 0.08 0.94 46.03 48.47 0.48 0.10 

Equidistant Azimuthal 31.17 32.70 0.15 0.90 24.85 25.56 0.03 0.39 45.99 46.31 0.62 0.20 

Equidistant Conic 31.14 32.73 0.39 0.30 24.80 25.56 0.07 0.13 45.83 47.58 0.58 0.08 

Stereographic Conformal Azimuthal 31.18 32.78 0.20 0.08 24.75 25.59 0.08 0.51 46.03 48.44 0.67 0.10 

Australian Antarctic Lambert 31.18 33.55 0.25 0.96 24.75 25.59 0.08 0.20 46.03 48.35 0.48 0.12 

Australian Antarctic Polar Stereographic 31.18 32.66 0.27 0.49 24.75 25.59 0.08 0.23 46.03 48.36 0.48 0.12 

 
For all study areas, WGS84 and GDA94 are shown to have the exact same results (Table 1). The variation 
between GCSs (WGS94 and GDA94) and map projections was not significant (p ≥ 0.05) (Table 1). The 

109



Turner et al., Effects of SRSs on the Accuracy of Spatial Predictive Modelling along a Latitudinal Gradient 

Lambert Equal-Area Azimuthal and Equidistant Azimuthal results for the STR dataset display what appear to 
be significantly different values from WGS84 (p < 0.05), however the actual differences in RMAE from 
WGS84 are not as large as some other SRSs such as Lambert Conformal Conic. Therefore, their variations 
are considered negligible. The comparison of RMAE for map projection classifications shows insignificant 
difference for IDW and OK methods over the latitudinal gradient (Table 1). Similarly, the comparison of 
Australian and Antarctica map projections displays insignificant difference for each interpolation technique 
over all study areas (Table 1).  

The visual assessment on the prediction layers showed that the spatial distortion occurred when applying the 
Antarctic map projections to the NAR and STR study areas, and when applying the Australian map 
projections to the AAR study area. While the principal scale remained the same for each prediction map, the 
scale factor clearly changed. However, despite the apparent spatial distortion, the interpolation results 
appeared remarkably similar. A subset of the SRSs for the AAR IDW predictions, shown in Figure 3, 
demonstrates this clearly. 

 

Figure 3. IDW spatial predictions of the AAR study region for five of the ten tested SRSs. 

4. DISCUSSION 

4.1. WGS84 and GDA94 Performance Comparison 

WGS84 and GDA94 are GCSs with slight differences due to their inverse flattening parameters and 
increasing disparity due to tectonic movement. The study results found no differentiation between the two in 
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any of the three study regions in terms of predictive accuracy. This suggests that the variation between the 
two GCSs has no impact on interpolation results at the cell size used in the study. 

4.2. GCS and Map Projection Performance Comparison 

Common interpolation techniques assume equal distances over changes of latitude and longitude, and this 
becomes increasingly false at locations further from the equator. This may be a cause of prediction error in 
GCS interpolation models. If the disparity in distance is a significant cause of error when interpolating in 
GCSs, then WGS84 and GDA94 would be expected to show higher error compared to the map projections in 
the study areas further away from the equator. The results did not show this pattern. There was a high level of 
spatial distortion evident in the GCSs, but it did not significantly impact on the interpolation accuracy.  

4.3. Map Projection Classifications Performance Comparison 

Different map projection classifications preserve some spatial properties and distort others. The tested map 
projections covered a range of classifications (i.e., conic, azimuthal, conformal, equidistant and equal-area). 
The comparison results showed insignificant difference in error values. The use of Young's Rule (Young, 
1920) and Snyder's decision tree (Snyder, 1987) to select map projection classifications with minimal 
distortion was ineffective for the purpose of minimising interpolation error. 

4.4. Australian and Antarctic Map Projections Performance Comparison 

Interpolating with the Antarctic map projections in the NAR and STR datasets, which are based in Australia, 
induced a high level of distortion, which was visually evident in the prediction maps. Similarly, the 
Australian map projections tested in the AAR dataset also displayed high levels of distortion (Figure 3). 

The results showed no clear correlation between spatial distortion level and interpolation accuracy. The map 
projections with minimal distortions did not perform significantly better than the map projections with high 
distortion, and in many cases the highly distorted map projections resulted in less interpolation error, such as 
the Australian Antarctic Polar Stereographic projection in the OK model of the NAR dataset (Table 1). 

The reason for this may lie within the mechanics of projection transformations and interpolation methods. 
When projected, the data points in a study area are displaced; the distances between points change, as do the 
angles. However, the changes that undergo each point are consistent within each projection. A point may 
move further away from another point, but it will also move away from all other points in a similar 
proportional manner. Despite the distortions, the spatial relationship between all points remains similar, 
which produces similar interpolation results. The relationships must change partially to give variation in 
results between projections, but a change due to distortion may result in an increase or decrease in prediction 
accuracy. Different levels of distortions are occurring between GCSs and map projection classifications but 
this does not necessarily correlate to higher or lower interpolation error.  

Overall, the variations between interpolation results were negligible and therefore we recommend SRS 
selection and projection can be removed for interpolation applications. Data points can be interpolated in 
WGS84 or the SRS they are originally stored in. This removes the projection selection and transformation 
processes, improving workflow efficiency.  

5. CONCLUSIONS 

This study examined the variation of interpolation accuracy of IDW and OK methods between different SRSs 
over three distinct regions spanning a latitudinal gradient. The key findings of the study which answer the 
proposed questions in the introduction are as follows: 

1. It was found that the slight differences between WGS84 and GDA94 did not affect interpolation 
accuracy along the latitudinal gradient.  

2. The results did not show GCSs inducing significantly higher or lower interpolation error than map 
projections over the latitudinal gradient. 

3. The comparison of the error values of the map projections in various classifications showed insignificant 
difference between all classifications over the latitudinal gradient. 

4. There was no significant variation in the performance of Australian and Antarctic map projections over 
the latitudinal gradient. Map projections with low spatial distortions did not outperform the map 
projections with high spatial distortion.  
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The variations between interpolation accuracy results are insignificant. Therefore, for studies at a similar 
level of precision, data points can be interpolated in WGS84 or the SRS they are originally stored in, which 
removes projection selection and associated transformation tasks, and improves modelling efficiency. 
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