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Abstract: In ecology, the theory of alternative stable states predicts that ecosystems can exist under multiple 
“states”. Ecosystems may transition from one stable state to another, in what is known as a state shift. Typically 
such shifts are considered as instantaneous and isolated non-interacting events resulting from environmental 
shocks, whose dynamics resemble the dynamics of a ball in a “potential well”. More often however, ecological 
systems are subject to continuous variation due to environmental drivers such as rainfall, temperature, among 
others, and these interact with the ecosystem dynamics to alter the potential well. Such drivers are known to 
impact intra-species interactions.
We explore a single species population model with logistic-like growth and a variable crowding parameter that 
measures the strength of the intra-species interaction. The crowding parameter is treated as a state-variable 
whose dynamics is described via a potential function subject to external environmental drivers.
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1 INTRODUCTION

In many ecological systems, their dynamics fluctuate around some stable long-term trend or average. Despite
variations due to the seasonality of the vegetation and reproductive cycles, the long-term behaviour does not
vary widely. However it is occasionally observed that small changes in the external factors can lead to a
fundamental change in the long-term behaviour of the system and another equilibrium state is found. The
existence of alternative stable states has become an influential concept in ecology (Holling 1973, May 1977).
An example given in Scheffer & Carpenter (2003) was the vegetation in the Sahara region. After a long period
of around three and a half thousand years of a slow decline in the vegetation cover, there was a sudden shift in
the amount of oceanic sedimentation and the Sahara region was changed to a desert.
This sudden change of state in the ecological system is analogous to the trajectory of a ball rolling on a surface
with hills and valleys – a surface potential (Beisner et al. 2003). The changes in the system arise due to small
perturbations in system parameters. These perturbations cause the ecological system to move across threshold
boundaries that separate different basins of attraction. The long term behaviour of the system is dictated by
local minima of the potential surface. For sufficiently small perturbations of system parameters, the long-term
behaviour will be centered around some long-term average. However as the perturbations are increased, the
system could be attracted to another stable state. We will explore a simple model which exhibits this types of
behaviour.

2 PROPOSED MODEL

Let us begin by assuming a model that incorporates logistic-like growth

dN

dt
= rN − bN2, (1)

where N is the population size. The first term represents the natural increase in the population with intrinsic
growth rate r in an environment with unlimited resources. The second term represents the effect of intra-
species competition due to finite resources. The parameter b measures the strength of that interaction. One
interpretation of b is that of a crowding factor: when resources are abundant b is small, and when resources are
depleted b increase thus intensifying competition. When r and b are constant, there exist two steady states: an
unstable state with zero population (N = 0) and a stable state that is the result of the balance between growth
and crowding – the population reaches a stable equilibrium at the system’s carrying-capacity K = r/b.
To extend this model, we consider the crowding factor b as a state variable that is described through a dif-
ferential equation. In addition, to model a system which mimics the alternative stable state hypothesis, we
propose a potential function which schematically is given in Figure 1. For different environmental conditions,
we expect that the system could be in one or the other of the stable states corresponding to the minima of
the potential function, and which occur at crowding factor b1 or b2. This in turn leads to two very different
carrying-capacities K1 and K2, respectively.
We assume that the potential function is symmetric about the average of b1 and b2 (bav = (b1 + b2)/2). One
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Figure 1. Schematic of the potential function and its derivative.
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Figure 2. The crowding factor without any forcing for various initial conditions.

of the simplest forms the potential function can take is a quartic function of the form

V (b) =
16(Vav − Vmin)

(b1 − b2)2
(b − b1)

2(b − b2)
2 + Vmin,

where Vmin and Vav are the value of the potential function at b = bi (i = 1, 2) and b = bav respectively.
The extra equation to model the changing crowding factor is the over-damped differential equation (Srinivasan
& Kumar 2015)

db

dt
= −dV

db
. (2)

One of the features to note about this system is that the evolution of b is decoupled from the population. In
Figure 2 we can see that the system quickly evolves away from the unstable state (bav) to one of the two stable
states (b1 and b2). This means that for any given initial environmental conditions the population settles to one
of the two stable states. The effect of external perturbations is explored next.

2.1 Periodic forcing

The system (1) and (2) possesses two stable equilibria (and one unstable equilibrium point). However, we are
interested in the case where there is a transition from one to the other. To explore this we incorporate a forcing
term to drive b. The resulting system equations are

dN

dt
= rN − bN2, (3)

db

dt
= −dV

db
+ f(t), (4)

where f(t) is a forcing term which could represent environmental drivers, such as seasonality. For simplicity
we assume

f(t) = ε cos

(
2πt

T

)
,

where T is the period of forcing and ε is the forcing amplitude. (If t is measured in years then setting T = 1
represents annual forcing: here we consider an arbitrary time unit.)
Suppose that r is fixed and that the population is initially in equilibrium with it environment with parameter
b1. For the case ε = 0, the population remains in equilibrium with its surrounding environment, N(t) = K1,
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see Figure 3. For ε = 0.02, a small fluctuation about the mean of b1 give rise to fluctuations in the population
about K1. Increasing to ε = 0.04 increases the size of fluctuations in the population about K1, but remains
locally bound. However, increasing the amplitude of the forcing term beyond some critical amplitude εcr

causes a transition from b1 to the large crowding factor b2, and back again, exhibiting an oscillatory behaviour
with a fixed period. The corresponding population initially declines, due to increased competition, followed
by an increase in the population when the environment is driven to a more favourable state.
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Figure 3. The evolution of the population and crowding factor as the strength of the forcing (ε) is increased.
Here T = 20.
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Three key points are evident from Figure 3. Firstly, the relative amplitude of the oscillations in the population
are smaller than those in the crowding factor. This is due to the nonlinearity in the equation describing the
population. Secondly, although the crowding factors b1 and b2 are reached repeatedly, the population does not
return to either K1 nor K2. This is dependent on the value of r. For larger r, the population is more responsive
to the changes in the state of the environment via changes in b. Thirdly, we note that bav is located mid-way
between b1 and b2, the populations oscillates about Kav which is asymmetrically located between K1 and K2.
This means that once the population decreases towards K2 it becomes harder to force the population to a larger
value. This has consequences for the conservation of such ecosystems (Dudgeon et al. 2010).

2.2 Impulsive forcing

An alternative approach to transitioning between alternative states is to include an impulse to the rate equation
for b. Such a scenario could represent a one-off weather event, such a fire on a land ecosystem (Schowalter
2012) or the effects of a environmental contamination on a marine ecosystem (Knowlton 2004). This has the
effect of “kicking” the system from one stable state to the other.
The system may be written as

dN

dt
= rN − bN2, (5)

db

dt
= −dV

db
+ f(t) + I(t), (6)

where I(t) is the impulsive component of an external perturbation. As an illustration, we use a scaled Gaussian
to approximate a delta function

I(t) = (b2 − b1)
1√
2πσ

exp

(
− (t − timp)

2

2σ2

)
.

This function is the delta function in the limit σ → 0. The population dynamics for this scenario is depicted
in Figure 4 where timp = 500 and σ = 0.1. Here we have assumed that we are transitioning from the higher
population (with b1) to lower population (with b2) stable state. Even if ε < εcr, the impact of the impulse it to
switch the dynamics irreversibly to the other stable state.
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Figure 4. The solutions in the upper panels have a periodic forcing and the solutions in the lower panels have
a periodic forcing plus an impulse force at t = 500.
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3 CONCLUSIONS

In this paper we have considered an ecosystem which possesses the behaviour of transitioning between two
alternative stable states. The ecosystem describes a single population that is subject to environmental drivers
that affect the intra-species competition for resources via the so-called crowding factor. By modelling the
crowding factor as a state variable we introduce a potential function approach to describe the induced changes
due to environmental perturbations.
This enables us to describe how environmental drivers can cause the system to switch between two stable
states. We also considered a scenario that includes a one-off kick to the system that forces the system to move
from one basin of attraction to another.
The work presented here is a preliminary study into the behaviour of a simple population model exhibiting
alternate stable states. Obvious extensions is to include stochastic drivers of b (or an other system parameters)
(Anderson et al. 2015, 2016).
Ultimately, our hope is to investigate whether a “potential well” approach can increase our understanding of
ecosystem dynamics, especially whether such an approach can better inform conservation practices. Conser-
vationists may aim to modify the potential in such a way as to eliminate the less favourable state and force the
population to a different, more favourable state, one for which the population size is larger. For instance, the
practice of quarantining large areas to fishing helps to increase the population of fish stocks by eliminating one
state in favour of an other (Ghosh et al. 2017).
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