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Abstract:  The Empirical Mode Decomposition (EMD) is a decomposition method that provides an 
alternative way to analyse nonlinear and non-stationary time series. Since its inception in the late 1990s, 
EMD has been applied in a number of areas, including bio-medicine, neuroscience, epidemiology, chemical 
engineering, finance, at-mospheric turbulence, seismology and ocean dynamics. The EMD process 
decomposes a signal into intrinsic mode functions (IMFs); each IMF can have variable amplitude and tends 
to occupy a narrow spectral band-width, rather than having a single frequency. The question of how the 
EMD copes with time series with high spectral density therefore naturally arises, but has only attracted 
limited attention in the literature. A time series with high spectral density is one comprised of multiple 
signals each with very similar frequencies.

In this study we consider fundamental cases of synthetic time series composed of two sinusoidal signals with 
prescribed differences in their frequencies. Separating the two component signals from the input data is known 
as the ‘two-tone separation problem’. We investigate the ability of the EMD method to successfully identify 
the two component signals as IMFs for each time series, and heuristic bounds on the utility of the EMD applied 
to high spectral density data are discussed.

In this study we consider two-tone signals without noise and find results similar to those already reported in the 
literature. We also consider noisy two-tone input signals and consider the ability of ensemble EMD (EEMD) 
to resolve the two component signals. This work appears to be the first to consider the two-tone separation 
problem in the presence of noise. Somewhat unsurprisingly, the addition of noise to the input data diminishes 
the ability of the EEMD method to identify and separate the two component signals. However, our results 
indicate that the presence of noise has a more prominent effect of the ability of EEMD to separate the two 
component signals than it does on its ability to distinguish the two-tone signal from a single waveform.

Expressing the results in terms of the ratio of the frequencies of the two component signals f , it was found that 
in the absence of noise EMD cannot distinguish a two-tone signal from a single waveform when f > 0.71, 
and could only reliably separate the two component signals when f < 0.5 approximately. These figures are 
in good agreement with those found in previous studies. For a noisy two-tone signal, it was found that EEMD 
was not able to distinguish the two-tone signal from a single waveform when f > 0.7 and could only separate 
the two component signals when f < 0.4 approximately.

In this initial study the effects of varying the amplitude of one component signal relative to the other was not 
considered. This would be an interesting extension of the research.
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1 INTRODUCTION

Many methods of time series analysis, including signal processing techniques, are designed to be able to
resolve separate component signals from data that are a superposition of a multitude of individual signals
with different frequencies and amplitudes. Examples of such methods include the Fourier transform, wavelet
analysis and the Empirical Mode Decomposition (Bracewell, 1965; Wickerhauser, 1994; Huang et al., 1998).
While all such methods are known to be able to successfully resolve component signals in a broad range of
applications, they all have their limitations. For example, the Fourier transform can perform poorly when
confronted with nonlinear and non-stationary time series (Kolláth and Oláh, 2009). Empirical Mode Decom-
position (EMD) was specifically developed to be able to accommodate data nonlinearity and non-stationarity,
and has been shown to provide reliable and accurate results in several applications (Donnelly, 2006; Schlur-
mann, 2002). However, given the empirical underpinnings of EMD it is not possible to gain a comprehensive
theoretical understanding of the limitations of the method when it comes to its ability to deal with particu-
lar idiosyncrasies in the data, such as abrupt non-stationarity, or high spectral density. As such, advances in
our understanding of EMD are based on studies using synthetic times series, which have been constructed to
investigate specific sensitivities of the method (Donnelly, 2006; Boudraa and Cexus, 2007).

Data with high spectral density is made up of distinct component signals, but with frequencies that are very
similar. Obviously there are many applications where it is desirable to be able to distinguish the component
signals, but this is complicated by the fact that when signals with very similar frequencies are combined
they produce a ‘beat effect’. In such situations, the data can present more as an amplitude modulated single
frequency signal. To test the ability of a method to resolve separate frequency components, it is customary
to consider the so-called ‘two-tone separation’ problem. In this problem, two sinusoidal signals of differing
frequencies are superimposed and then the method is evaluated based on its ability to resolve the two separate
signals.

The ability of EMD to resolve two signals with similar frequencies was studied by Rilling and Flandrin (2008),
who used a simple synthetic data set made up of two sinusoidal signals. The amplitude ratio a and the fre-
quency ratio f of the two component signals were varied systematically to identify a region in (a, f)-space
where EMD could correctly separate the two-tone signal. Outside of this region, EMD either considered the
two-tone signal as a single waveform or exhibited some other ‘indeterminate’ behaviour.

The work of Rilling and Flandrin (2008) was extended by Feldman (2009), who provided a theoretical analysis
of the harmonic modes in a two-tone signal. Feldman (2009) also found that when (a, f) fell within a certain
region, EMD was able to resolve the two separate signals, but when f ≈ 1 and a ≈ 0 it was not possible for
EMD to separate the two tones. For frequencies that were more dissimilar, EMD could resolve the two tones
even when the amplitude ratio was small.

Other authors have also considered the two-tone separation problem using alternate data-driven methods such
as synchrosqueezing (Wu et al., 2011), but in this paper will we maintain the focus on EMD. In all of the
previous works mentioned here, the two-tone input signal was comprised of two ‘pure’ sinusoidal signals in
the absence of noise. While this is a useful approach, inferences drawn from the results should be considered
of limited validity to real-world cases, in which time series data is more often affected by noise. It is well
known that in the presence of noise EMD can result in mode-mixing Huang and Wu (2008) and so it is of
interest to understand how such effects might influence the ability of EMD to resolve two signals of similar
frequency. In this study, we extend the approach taken in earlier studies by adding noise to a synthetic two-tone
input signal. In this initial work only the sensitivity to frequency differences is considered. The sensitivity to
differences in the amplitudes of the two component signals will form the subject of future work.

2 METHOD AND DATA

2.1 EMD Method

The EMD method is a data-adaptive technique for decomposing a time series into component series (Huang
et al., 1998). Essentially, EMD applies a filtering technique based on upper and lower envelopes of the ex-
treme points in a time series to iteratively extract zero-mean component time series, known as Intrinsic Mode
Functions (IMFs) and a residual trend. Specifically, the IMFs satisfy the following defining conditions: (i)
symmetric upper and lower envelopes (mean is equal to zero); (ii) the number of zero-crossings and extrema
are either equal or differ by one. To obtain the IMFs, EMD implements the following algorithm:

1. Identify all the local extrema in the time series y(t).
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2. Interpolate the maxima and minima separately to define upper and lower envelopes.

3. Calculate the mean m1(t) of the upper and lower envelopes.

4. Calculate the first protomode as h1(t) = y(t)−m1(t).

5. Reapply steps 1-4 until hj = hj−1 = hj−2, then IMF1(t) = hj(t).

6. Calculate the residual r1(t) = y(t)−IMF1(t), then reapply steps 1-5 to r1(t) in place of y(t) to deliver
IMF2(t).

7. Calculate the residual r2(t) = r1(t)− IMF2(t), and repeat the above steps to obtain subsequent IMFs.
The algorithm terminates when the number of zero-crossings and extrema of the residual are equal or at
most differing by one. In this case the residual is interpreted as the trend in the original series y(t),

After obtaining all the IMFs, the time series can be rewritten as:

y(t) =
n∑

j=1

IMFj(t) + rn(t), (1)

where rn(t) is the residual/trend. For a more detailed exposition of the EMD procedure the reader is referred
to Huang and Wu (2008).

As mentioned already, noisy input data can result in mode-mixing across the IMFs. To circumvent this issue
when dealing with noisy time series, the EMD procedure is implemented as part of an ensemble process, which
is referred to as ensemble EMD (EEMD). In the EEMD procedure, random noise (ε ∼ N(0, δ)) is added to
the input data before the EMD procedure is applied. The process of adding random noise to the signal and
applying EMD is repeated a large number of times and the ensemble average of the IMFs found from these
numerous EMD applications define the final ensemble IMFs (Huang and Wu, 2008). In this study we use
EEMD with 3000 ensemble members, when dealing with noisy input data.

2.2 Synthetic Time Series

We use a two-tone signal, comprised of two sinusoidal time series, to examine the ability of the EMD/EEMD
method to resolve signals with similar frequencies. The use of synthetic data permits direct comparison of
the IMFs obtained from EMD and EEMD with the known signal components. Specifically, we consider the
superposition of two signals S1(t) (high frequency mode) and S2(t) (low frequency mode) defined as:

S1(t) = 0.6 sin

(
2πt

T1

)
; S2(t) = 0.6 sin

(
2πt

T2

)
; t = 1, 2, . . . , 1000. (2)

T1 and T2 are the periods of the two component signals. We take T1 = 50 as fixed, and allow T2 to vary as
T2 = T1 + i, i = 1, 2, . . . , 100.

The synthetic two-tone input data is then defined as:

y0(t) = S1(t) + S2(t); t = 1, 2, . . . , 1000. (3)

To emulate a noisy input time series, we add noise to the two-tone signal y0(t):

y1(t) = y0(t) + ε(t); t = 1, 2, . . . , 1000, (4)

where ε ∼ N(0, δ) and δ is taken as 20% of the standard deviation of y0. Figure 1 shows four examples of the
two-tone input signals used in the study.

3 RESULTS AND DISCUSSION

In order to address the performance of the method we consider the mean absolute error (MAE) of the IMFs
extracted using EMD/EEMD:

MAEj =

1000∑
t=1

|Sj(t)− IMFj(t)|

1000
; j = 1, 2. (5)

169



F.M. Ziaeyan Bahri and J.J. Sharples, EMD and the two-tone separation problem with noise.

i = 20 

i = 50 

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

i = 30 

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

i = 95 

Figure 1. Examples of two-tone input signals used in the study. Left panels: noiseless data y0. Right panels:
noisy data y1.

3.1 Two-tone signal in the absence of noise

Figure 2 shows the results of applying EMD to the noiseless two-tone signal. The left panels show how MAE1

(left) and MAE2 (right) vary with i, while the remaining panels provide examples of how the extracted IMFs
compare with the actual high frequency (left) and low frequency (right) components for different representative
values of i.

The response of MAE1 to increasing i in Figure 2 indicates that EMD is not able to resolve the signal S1 when
i . 20. This can be seen in the middle left panel of Figure 2, which shows when i = 20 the extracted high
frequency IMF (red curve) bears a poor resemblance to the actual component. Figure 2 indicates that MAE1

decreases with i in the range 20 . i . 50 after which it levels out. The bottom left panel of Figure 2 shows
how the extracted IMF1 compares to the actual component for the case i = 50; a very good fit is evident.

The panels on the right of Figure 2 show how EMD performs in extracting the low frequency component S2.
The response of MAE2 to variation in i exhibits almost identical behaviour to MAE1.

We note that visual assessment of the results suggested that the separate signals S1 and S2 could be adequately
discerned when MAE1,2 . 0.2. For 0.2 . MAE1,2 . 0.3 the extracted IMFs were marginally distinguishable
but exhibited a degree of mode-mixing. When MAE1,2 & 0.3 it was not possible to visually distinguish the
two component signals in the extracted IMFs.

We note that i = 20 corresponds to a signal frequency ratio of f ≈ 0.71 and so these results are broadly
consistent with the results obtained by Rilling and Flandrin (2008) for component signals with an amplitude
ratio of a = 1. Indeed, they found that EMD could identify a two-tone signal for f & 0.75, and they found
that the two component signals could be successfully separated below a signal frequency ratio of f ≈ 0.55. In
the present study this value of f corresponds to a value of i ≈ 40 and MAE1,2 ≈ 0.1.

3.2 Two-tone signal with noise

Figure 3 shows the results of applying EEMD to the noisy two-tone signal y1. The top left panel of Figure 3
shows the response of MAE1 to changes in i. The results again indicate that EEMD does a poor job of
resolving the two component signals when i . 20− 25. In comparison to the noiseless case, the reduction in
MAE1 for i > 20 is more gradual in Figure 3. Furthermore, for the noisy two-tone case, MAE1 does not start
to flatten out until i & 60, and displays considerable variability.

170



F.M. Ziaeyan Bahri and J.J. Sharples, EMD and the two-tone separation problem with noise.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Mode 2 (S 2)Mode 1 (S 1)

MAE high frequency MAE low frequency

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
i = 50

i = 30 i = 20 

i = 60 

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900

0 100 200 300 400 500 600 700 800 900

0 10 20 30 40 50 60 70 80 90

0 100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

Figure 2. Results of EMD applied to the noiseless two-tone signal y0. The two top panels show MAE1,2. The
remaining panels show examples of how the extracted IMFs (red) compare to the actual signal components
(black) for particular values of i.

The middle left panel of Figure 3 shows that for i = 20, EEMD applied to the noisy input signal gave similar
results for IMF1 as did EMD applied to the noiseless signal. The bottom left panel of Figure 3 shows that
in the case of the noisy input signal, EEMD is still having difficulty resolving the high frequency component
when i = 50, compared to the noiseless case.

The panels on the right of Figure 3 show how EEMD performs at extracting the low frequency component S2

from the noisy input signal. Similar to the other cases, MAE2 is relatively constant up until i ≈ 20 and then
begins to decrease up to i ≈ 65 − 70, after which it levels off. The middle right and bottom right panels of
Figure 3 provide examples of how well the extracted IMF2 compares to the low frequency component S2. It
can be seen that even when i = 95, the extracted mode is not in perfect agreement with the actual component.

It is worth noting that the value i = 20− 25 corresponds to a frequency ratio of f ≈ 0.66− 0.70. This value
is slightly lower that the threshold value of f ≈ 0.75 reported by Rilling and Flandrin (2008), where EMD
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Figure 3. Results of EEMD applied to the noisy two-tone signal y1. The two top panels show MAE1,2. The
remaining panels show examples of how the extracted IMFs (blue) compare to the actual signal components
(black) for particular values of i.

either considers the two-tone signal as a single waveform, or produces ambiguous results. Our findings are
therefore roughly consistent with those of (Rilling and Flandrin, 2008), but suggest that the addition of noise
to the input signal slightly diminishes the ability of EEMD to correctly identify the input signal as a two-tone
signal. While there needs to be more investigation of the noisy two-tone separation problem using different
noise profiles, our results suggest that EEMD cannot successfully separate the two tone signal if the frequency
ratio is above about f = 0.7.

For the noisy input signal, it was found that minimal MAE1,2 values were attained for i & 60− 70, compared
to i & 50 for the noiseless case. In terms of the frequency ratio, i ≈ 60− 70 corresponds to f ≈ 0.40− 0.45,
which is less than the f ≈ 0.55 found by (Rilling and Flandrin, 2008) as the threshold value, below which
EMD can successfully resolve the two sinusoidal components. Thus, while the addition of noise reduces the
threshold above which EEMD treats the two-tone signal as a single waveform only by about 7%, it has a more
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pronounced effect on the ability of EEMD to successfully separate the two component signals. The threshold
value for the frequency ratio in this case is reduced by about 27%.

Assessing the performance of EEMD visually, it was found that for i . 25 EEMD could not distinguish the
two signals, while results were intermittent for i between 25 and 60. EEMD was able to distinguish the two
signals for i & 60, but the modes were not accurately identified until i & 95 for the noisy input two-tone
signal. In presence of noise, more mode-mixing was evident across the modes; it is possible that this could be
improved using alternate interpolation algorithms as the basis for EEMD, such as smoothing splines instead
of cubic splines. This will be considered in future work.

4 CONCLUSION

This study considered the two-tone separation problem using EMD and EEMD in the presence of noise.
Results from using EMD on noiseless two-tone signals were in general agreement with previous studies. It
was found, however, that the presence of noise has an effect on the ability of EEMD to successfully identify
and separate the two component signals. In particular, EEMD could not distinguish a noisy two-tone signal
from a single waveform if the frequency ratio of the two component signals was above f ≈ 0.7. Moreover,
EEMD could only successfully identify the two component signals when the frequency ratio was below about
f = 0.4.

The present study did not consider the effect of adjusting the amplitude of the component signals relative
to one another. This will be investigated in future work, as will the effects of increasing the amplitude and
non-stationarity of the noise added to the two-tone signal.
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