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Abstract: Understanding how microbial DNA from root zone (rhizosphere) soil relates to key metabolic 
enzymes used by rhizosphere microbes was investigated using time series regression. We aimed to define the 
influence of these enzymes on DNA concentrations. This objective was achieved using phosphorescent 
measurement of both enzyme activities and DNA concentrations. Rhizosphere samples from three strains of 
canola genetically modified (GM) for herbicide resistance (HR) to atrazine, imidazolinone, and glyphosate 
respectively together with the isoline to the transgenic glyphosate-resistant variety were grown in a greenhouse 
in pH-neutral Vertisol soil. Analyses were carried out at days 7, 21, 42, and 56 growth representing 
germination, early growth, maturity, and seed formation-senescence. Enzymes represented key soil microbial 
metabolic processes and included leucine aminopeptidase (LAP), alkaline phosphatase (PHOS), cellobiose 
dehydrogenase (CELL), beta-glucosidase (BGL), and aryl sulphatase (SUL). The experiment employed a 
randomized complete block design with four blocks of eight pots, each pot containing two plants of identical 
genotype, and each cultivar randomly distributed within each block. Enzyme measurements were taken before 
substrate addition and again after incubating at 25 degrees Celsius for one hour. DNA concentrations were 
measured using the Pico Green technique. Mean increases in enzyme activities for each lifespan stage were 
correlated with DNA concentrations using time series regression. A highly significant relationship (p = 0.001) 
between DNA concentration and beta-glucosidase activity emerged. No other enzyme significantly influenced 
DNA. The implications of this finding are that during times in the plant lifecycle when microbial-root 
biochemical interaction are increased (flowering and seed formation), the soil must have adequate SOM 
available to the microorganisms. It is now known that commensal relationships exist between rhizosphere soil 
microorganisms and the roots within that soil. The importance of microorganisms in breaking down decaying 
organic material from plant residues is reflected in contemporary measurement of soil fertility which 
recognizes that a matrix of physical, chemical, and biological parameters together are required for an adequate 
assessment. This is because when organically-bound carbon biomass is subjected to transformation, other 
nutrients like Nitrogen (N), Phosphorus (P), and Sulphur (S) are released for mineralization by roots. The 
results reinforce the importance of soil organic matter (SOM) as a component of soil fertility and sustainable 
soil health.  
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1.  INTRODUCTION 

1.1. Background information on root-microbial commensalism 

Roots respond in an interdependent way with the flora and fauna in the soil. They excrete nutrients into the 
rhizosphere, sustaining the microbes and the food chain dependent on them. Microbes correspondingly 
mineralise soil nutrients for root absorption (Janos, 2007). The exudates mediate biological responses from the 
biota and from roots of other plants through chemical signalling (Bulgarelli, 2012). The effect is to protect the 
roots from invasion by parasitic organisms (Jain et al., 2012), and to provide competition against adjacent 
plants, as well as changing plant tissue chemistry and function (Friesen et al., 2011). Recent discoveries by 
Lundberg et al. (2012) and Bulgarelli et al. (2012) have shown that the rhizosphere contains microorganisms 
(in particular bacteria) which are important to the plant’s survival. The root secretions are controlled by the 
plant’s genes, and the immune system selects those organisms (commensals and mutualists) which benefit the 
plant by contributing to growth.  

1.2. Microbial enzymes  

These are important in several ways relating to soil organic matter, soil organic carbon, and the transformation 
of minerals (mineralization) of organically-bound essential minerals to forms capable of absorption by roots 
(Feller, 2012). Failure of cellulose- and lignin-based material to decay under the influence of soil microbial 
cellulase enzymes could therefore have profound effects on soil-plant interaction. 

1.3. Experimental aims 

Our aim was to discover if significant correlations existed between microbial DNA concentration and the 
activities of five key microbial enzymes chosen for their unique contributions to plant metabolism. To achieve 
this aim, we employed panel regression analysis of phosphorescence measurement of enzyme activity and 
DNA with the objective of developing a dataset suitable for the regression analysis. 

2. MATERIALS AND METHODS 

2.1. Introduction 

Three of the GM cultivars grown were modified for HR to atrazine, imidazolinone, and glyphosate 
respectively. The genetically engineered variety was the glyphosate-resistant cultivar. The other two HR 
varieties carried cis-genic modification through selective breeding. An isoline to the glyphosate resistant 
cultivar was also grown for comparison. A glasshouse system minimized environmental variation to produce 
consistent growing conditions. Time-series regression was used to correlate the means for all enzyme vectors 
with DNA concentration. Enzyme activities were measured using the method advocated by Deng et al. (2011) 
employing phosphorescence. DNA concentrations were measured with PicoGreen method advocated by Petric 
et al. (2011). SAS was used for statistical analysis. 

2.2. Panel regression analysis 

The purpose of panel or time series regression is to investigate whether or not sources of variation other than 
those vectors chosen in the standard regression model are influencing results. An ordinary least squares (OLS) 
analysis may be biased either because an influential variable has been omitted, or because errors in the 
covariates are correlated over the time series, or both. In a standard regression, unobserved variable effects are 
absorbed into the error term, forming a composite error factor. This can result in the phenomenon of 
endogenicity, and add inefficiency to the statistical analysis. For example, errors generated at time one may be 
correlated with errors at other times, and thus be biasing the OLS result with serial correlation errors. It is of 
interest as well that the DNA result may not be independent of any of the enzymes. By correcting for 
endogenicity, more accurate results may be obtained. The time series vectors associated with panel regression 
analysis may help to explain the nutrient sources required by the canola plant as it grows and develops, allowing 
for the above complications. Hence the justification of panel regression analysis as applied to this experimental 
programme: It is descriptive of the dynamics of plant growth and may produce a causal analysis of plant and 
soil microbe physiological effects, allowing for the above statistical limitations. In the study, the following 
pattern of analysis is followed: 

● OLS – ordinary least squares analysis: This can be inefficient by failing to use all the information 
capable of being exploited within the data set, and by not fully exploring error term autocorrelation.  
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● Fixed effects method analysis (FE). This transforms the data to remove unobserved but constant 
systemic error. The remaining error is a time-varying error of unexplainable origin also called an 
“idiosyncratic” error. The “fully demeaned” data can therefore be subjected to OLS analysis. 

● Random Effects Methods (RE) are more efficient in estimation and capable of examining within-
observation errors. The model assumes that errors across units are uncorrelated, but correlated within 
each unit; and that variance of the composite error term is the sum of both idiosyncratic error and 
unobserved errors. Again the data is “demeaned” by removing an estimated demeaning factor between 
1 and 0 derived from variance component estimation, in order to choose either the Fixed or Random 
model, depending on calculation of the Hausman Test which determines if the unobserved errors are 
exogenous, i.e. uncorrelated. 

3. RESULTS 

3.1. Standard Panel Regression Model 

The model for this Ordinary Least Squares (OLS) regression is given by the following equation 

DNAit = β0 + LAPitβLAP + PHOSitβPHOS + BGLitβBGL + CELL itβCELL + SUL itβSUL + vit  (1) 

This model has the following assumptions: Covariates exogenous, errors uncorrelated, errors homoscedastic.  

Using the standard regression model where DNA concentration is the Dependent Variable, it is noted that the 
model is valid (R2 = 0.9985, adjusted R2 = 0.9985); yet only one parameter (BGL) is significant in explaining 
DNA concentration (F = 1346, df = 5, p = 0.05). Those parameters which are not significant statistically have 
both positive and negative values and large standard deviations.  

Table 1. Means, standard deviations, minima, maxima for panel data set 

Variable N Mean Standard Deviaton Minimum Maximum 

DNA 16 24.792 40.427 1.130 93.836 

LAP 16 16.662 6.412 5.730 21.300 

PHOS 16 47.650 39.857 16.131 117.590 

BGL 16 64.969 76.673 16.552 202.118 

CELL 16 6.358 7.628 1.470 21.170 

SUL 16 1.291 1.331 0.150 3.200 

● DNA = double-stranded DNA concentration; LAP = leucine aminopeptidase activity; PHOS = phosphatase activity; BGL = 

beta-glucosidase activity; CELL = cellobiose dehydrogenase activity; SUL = aryl sulfatase activity 

Table 2. Standard panel regression model for dependent variable DNA 

Source DF Sum Squares Mean Square F Value p 

Model 5 24479 4895.865 1346.880 <.0001 

Error 10 36.350 3.635   

Corr. Total 15 24516    

R2 0.998     

Adj R2 0.998     
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The model derived in Table 2 is valid (R2 = 0.998) producing a highly significant effect in predicting DNA 

concentration (p = 0.001). 

Table 3. Parameter estimates for standard panel regression model 

Variable DF Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 1 -3.999 1.388 -2.880 0.016 

LAP 1 -0.410 0.212 -1.930 0.082 

PHOS 1 -0.002 0.033 -0.060 0.954 

BGL 1 0.633 0.083 7.650 <.0001 

CELL 1 -0.974 0.825 -1.180 0.265 

SUL 1 0.635 0.951 0.670 0.520 

 

Tables 2 and 3 indicate that the standard regression model gives a valid and highly significant means of 
assessing DNA through the BGL vector (p = 0.001). LAP is a less significant influence (p = 0.1). Other vectors 
indicate both positive and negative effects in explaining DNA concentration, although not significant. Here it 
appears that the enzymatic activity of BGL in delivering glucose to the rhizosphere from soil organic carbon 
sources has a significant and positive impact on the associated concentration of the DNA in that rhizosphere.  

3.2. Fixed effects panel regression model analysis (FE) 

By removing an error term Ci by subtracting the within-unit mean from each measurement on that enzyme 
activity, the time-constant effects are eliminated, expressed as follows: 

yit – mean (yi) = x´it - mean (xi´β) + Ci - mean (Ci) … uit – mean (ui), t = 1,2,…T  (2) 

A fixed effects transformation has occurred and can be written  

demeaned Yit = demeaned x´itβ + demeaned uit      (3) 

and x´it does not contain any error term and applies pooled (OLS) demeaned data to the analysis. 

A test for the significance of the No Fixed Effects model was carried out. 

H0 : Demeaning the across unit error term gives a significant effect 

H1: No significant difference to results with this procedure 

Dependent Variable: DNA; R2 = 0.9987 

Table 4. Fixed estimates model results for dependent variable DNA 

Num DF Dep DF F Value Pr > F 

3 7 0.42 0.744 

 

Since the null hypothesis is unable to be rejected, this model cannot provide a suitable method of removing 
model endogenicity in the data analysis. 
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Table 5. Panel regression model analysis for FE model 

 

Variable 

 

DF 

 

Parameter Estimate 

 

Standard Error 

 

t Value 

 

Pr > |t| 

Intercept 1 -4.900 1.940 -2.530 0.0395 

LAP 1 -0.337 0.284 -1.180 0.275 

PHOS 1 -0.013 0.044 -0.300 0.770 

BGL 1 0.639 0.105 6.060 0.0005 

CELL 1 -1.058 1.069 -0.990 0.355 

SUL 1 0.272 1.299 0.200 0.840 

 

In Table 5 the vector BGL remains significant (p = 0.001) in predicting DNA, and its positive vector therefore 
provides a precise effect for BGL on the dependent variable, since the model is still valid (R2 = 0.9987). 
Estimated vectors and R2 differ from the OLS model, thereby indicating greater accuracy. Nevertheless, only 
one vector is capable of reliably explaining DNA. Because the alternate hypothesis cannot be rejected, the 
model is of limited value to the analysis. The RE Model therefore follows.  

3.3. Random effects panel regression model (RE) 

In the RE model, an estimator transforms data by “partially demeaning” each vector using a demeaning factor 
between 0 and 1, the specific demeaning value being based on an estimation of the variance components. Only 
a part of the mean is subtracted, instead of subtracting the entire unit-specific mean. This is an attempt to 
explain the effects of within-cluster correlation and thus provide more efficiency in analysis. Such a process 
requires the more stringent assumption expressed mathematically as: 

E(Ci | xi1 ,…, xiT ) = E(Ci) = 0        (4) 

To test whether the RE panel regression model provides a better estimate of DNA concentration than the FE 
model, the Hausmann test is carried out. If it can be shown that the unobserved errors are exogenous, the FE 
and RE are equivalent. If not, the RE model is more suitable for analysis because of its efficiency. 

Dependent Variable: DNA; R2 = 0.9987 

Hausman test for random effects indicated an M value of 0.04, P>m of 1.000, with 5 DF  

Table 6.  Parameter estimates for the RE model 

Variable DF Parameter Estimate Standard Error t value Pr > |t 

Intercept 1 -4.051 1.478 -2.740 0.0208 

LAP 1 -0.370 0.226 -1.640 0.133 

PHOS 1 -0.008 0.035 -0.230 0.819 

BGL 1 0.635 0.086 7.410 <.0001 

CELL 1 -1.007 0.862 -1.170 0.270 

SUL 1 0.435 1.025 0.420 0.681 
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Table 6 indicates that BGL is again significant in predicting DNA concentrations (p <.001). Thus a more 
accurate estimate of vectors has been derived by eliminating endogenicity and refining nominated vectors.  

3.4. Summarizing results 

The time series RE model analysis demonstrated a highly significant statistical relationship between BGL 
activity and DNA concentration. Since BGL is an enzyme associated with mineralization and the release of 
metabolites from decaying plant residues (sources of lignin and cellulose), it again brings into focus how SOM 
decay is vital to rhizosphere microbial processes nurturing commensal root-microbe relationships.  

4. DISCUSSION AND CONCLUSIONS 

4.1. Plant-microbe-enzyme linkages 

The panel regression analysis suggests both descriptive and causal explanations for achieved experimental 
results while minimizing endogenicity. Through similar models, it may be possible to understand how soil 
organisms influence plant differential growth and development and demand for nutrients. The apparent linkage 
of beta-gluconase activity with DNA concentration indicates that glucose derived from biochemical breakdown 
of cellulose, lignin, and other soil organic carbon sources appears to play a vital part in the sustenance of 
microbes in the soil.  

4.2. Implications 

Planting without the need to plough, or at least minimizing soil disturbance is a desirable environmental 
pathway. GM and HR cultivars minimizing pesticide use fit into this scenario well. Long-term no-till strategies 
which allows no disturbance to SOM decay can release mineralizable plant nutrients. The effects of GM plants 
on rhizosphere processes has received widespread investigation through ecotoxicological examination, and has 
so far failed to establish consistently significant differences amongst cis-genic modification (by selective 
traditional plant breeding), or trans-genic modification (by genetic engineering), or plants with no modification, 
compared with variation caused by abiotic factors like season, climate, and soil type. Advocates of GM 
technology prefer to see crop residues remain on or in the soil and to allow residues and roots to decay without 
the need to plough. Promoting and preserving the organic content of soil is now seen as an essential part of soil 
stewardship. Therefore, if GM technology is one part of a new way of growing canola and other crops, then 
gains in SOM and soil C generally will be environmentally beneficial. We predict that GM crops will be part 
of a mix of new productive technologies capable of supporting a growing world population through sustainable 
intensification. 
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