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Abstract:  During laser fusion cutting of sheet metal parts, a focused laser beam is traversed relatively to 
the processed part. The material is molten due to the heat input of the laser beam and driven out of the cutting 
kerf by a gas jet aligned coaxially with the laser. The edges of the remaining cutting kerf show a striation 
pattern which affects the quality of the cut. The amplitude, wavelength and shape of these striations 
depend on the dynamics of the motion of the thin melt film inside the interaction zone.

Instabilities in the thickness of the melt film that emerge at the cutting front propagate to the sides and solidify 
to an irregular surface. Understanding effects that lead to the emergence and stirring up of instabilities is 
crucial to derive measures for high quality cuts with a drastically reduced striation depth.

To simulate the behavior of the thin melt film, the underlying incompressible Navier Stokes equations have 
to be solved with high accuracy using a well chosen set of boundary conditions. The surface of the melt film 
moves with a velocity of up to several meters per second from top to bottom side while the thickness of the 
melt film varies from a few to around one hundred micro meters perpendicular to the laser beam. These scales 
prevent the use of classical finite element or finite volume approaches to solve the mathematical problem 
numerically accurate without proper reduction techniques.

To develop a simulation that is able to depict the behavior of the melt film, the Navier Stokes equations are 
transformed to conformal coordinates and subjected to scaling analysis. A perturbation series expansion is 
performed and the equations are integrated in radial direction using a quadratic ansatz for the mass flux in 
azimuthal and axial direction. The resulting system of partial differential equations can be solved numerically 
and describes significant properties of the dynamics of the melt film with high temporal and spatial resolution. 
The physical mechanisms that lead to striation formation can be investigated by analysis of the model structure 
as individual physical phenomena can be selectively altered in the simulation.

The presented method leads to a simulation that provides support in the evaluation of measures to reduce the 
striation depth like modulation of laser power or beam shaping optics. The presented combination of model 
reduction techniques is adaptable to any boundary layer problem of similar type.
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1 INTRODUCTION

In laser fusion cutting of sheet metals, quality reducing striations occur on the cutting kerf of the processed
part, which cause a measurable roughness as shown in Figure 1. Experimental observation by Arntz et al.
[2017] using the trim cut analysis show that these striations happen by solidification of small ligaments of the
melt film in the wake of the cutting process. The formation of ligaments is caused by inherent instabilities
that exist in laser cutting as shown by Vossen and Schüttler [2012]. To understand which processes and which
parameters tend to increase or decrease the amplitude of these instabilities, modeling and simulation of the
melt film dynamics carried out.

Otto and Schmidt [2010] present a full featured simulation of laser fusion cutting using the finite volume
software OPENFOAM. Because of the complexity of the gas dynamic simulation to model the driving forces
of the process gas flow, the resolution of the resulting simulation is limited by the computational effort that
can be made for a full featured process simulation. Kohl and Schmidt [2013] reduce the effort by applying
pressure boundary conditions for the molten phase and show the effect of different laser beam shapes on the
behavior of the melt film. Kheloufi et al. [2015] use the computational fluid dynamics software FLUENT to
model the laser cutting process and demonstrate that the effect of Fresnel absorption is important for the final
shape of the cutting kerf. Amara et al. [2015] enhance this model by taking surface tension into account, which
contributes to the formation of striations.

However, these full featured simulations of laser processing are limited by the computational effort that can
be performed for an individual simulation run. Typical scales of laser fusion cutting include melt film thick-
nesses of several 10 µm and melt flow velocities above 1 m s−1 [Wandera and Kujanpaa, 2010]. The resulting
spatiotemporal scales to describe the dynamics of the thin melt film in laser fusion cutting demand for proper
reduction techniques and adapted solution methods. An approach for a boundary layer approximation using
conformal coordinates and a perturbation expansion is presented in this paper.

Figure 2. Sketch of laser fusion cutting. Perturbations in 
the solidifying melt film cause a striation pattern on the 

processed cutting kerf.

Figure 1. Striations in laser cutting. Espe-
cially for 1 µm wavelength laser sources the 
processed part shows a certain roughness.

1.1 Model Reduction and Scale Separation

Langtangen et al. [2002] present several numerical solution schemes for incompressible viscous flows and
give hints about the computational implications while solving these problems, including operator splitting
techniques. For laser fusion cutting a hierarchy of spatial dimension can be identified as shown by Schulz
et al. [1999]. A 2D-description of the melt using integral methods is given by Schulz et al. [2009]. Figures 2
and 3 depict the length scales present for the melt film. Conformal coordinates are presented in Figure 4 and
natural length scales of the process can be identified. The axial z-direction perpendicular to the surface of the
sheet metal and along with the laser beam shows the largest length scale represented by the sheet thickness d.
The azimuthal scale of the lateral α-direction is represented by the laser beam radius w0 and the radial length
scale in ν-direction has a typical length scale of the melt film thickness dm. For a typical laser fusion cutting
task follows

dm � w0 � d. (1)
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These scales describe typical average values for the modeled process and are set constant during a specific
computation. Because of the presence of this hierarchy of spatial dimensions in the conformal description of
the melt film, the underlying equations are expanded to a perturbation series [Kato, 1995]. A power series
expansion [Lopez-Sandoval and Mello, 2012] of the quantities velocity, pressure and temperature enables a
hierarchical solution sequence that allows high accuracy at critical and reduced accuracy at smooth regions
of the melt film. The resulting expression of the NAVIER-STOKES and energy equations is well suited for an
integral boundary layer solution method that allows fast and accurate computational solutions. The general
applicability of a perturbation analysis to describe the dynamics of the melt at the apex is given by Poprawe
et al. [2010] using a 2D model based on the mathematical analysis presented by Vossen and Schüttler [2012].

2 MATHEMATICAL TASK

Figure 3. 2D sketch of laser fusion cutting 
including feed velocity v0 and the typical length 

scales sheet thickness d, beam radius at focal 
position w0 and av-erage melt film thickness dm.

Figure 4. Conformal coordinates for the melt film in 
laser fusion cutting. The integral model solves for the 

characteristic variables melt film thickness h and 
integrated mass fluxes in azimuthal mα and axial mz 

directions.

The mathematical task of laser fusion cutting is presented by Schulz et al. [2009]. Details about the absorbed
heat flux are given by Mahrle and Beyer [2009]. The set of equations that has to be solved for the melt film
includes the balance of mass, the Cauchy momentum equation in conservative form neglecting the gravitational
force and the heat flux equation as energy balance equation.

∇v = 0 MASS

∂tv + (v · ∇)v = −1

%
∇p+ νl∆v MOMENTUM (2)

∂tT + (v · ∇T ) = κ∆T ENERGY

for the quantities flow velocity v = v(x, t), temperature T = T (x, t) and pressure p = p(x, t) for x ∈ Ωl(t)
and the material parameters density %, kinematic viscosity νl and thermal diffusivity κ. For a given heat flux
Q[s,l] = k∇T[s,l] · n for the solid and the liquid phase, an inflow vin and a fixed temperature at melting
temperature Tm, the boundary conditions for the melting boundary Γm are given as

Qs = Ql − %hmvmp , T = Tm, v = vin(t), x ∈ Γm(t). (3)

with specific melting enthalpy hm and normal velocity of the phase boundary vmp . At the absorption boundary
Γa no material is transfered in normal direction n and the normal velocity of the phase boundary is vap . The
process gas pressure pg and the Laplace pressure for the surface tension σ and the curvature K act as load for
the normal component of the stress tensor, the driving forces τg[1,2] and the thermal gradient of the surface
tension act as load for the tangential components in the tangential directions t[1,2]. The absorbed energy flux
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density Qa of the laser beam acts as load for the temperature T .

ρ(v − vapn)n = 0, n(Sn) = −pg + σK,

t[1,2](Sn) = τg[1,2] −
dσ

dT

(
∇T · t[1,2]

)
, k∇T · n = Qa

(4)

for x ∈ Γa(t) and the thermal conductivity k. The stress tensor S for incompressible fluids is the sum of a
hydrostatic and a viscous contribution

S = −pI + η
(
∇⊗ v + (∇⊗ v)

T
)

(5)

with the identity I, the dynamic viscosity η and the dyad a ⊗ b = abT . At the bottom boundary Γb, a
continuity boundary condition is applied to describe the outflow of the molten material.

The melt film thickness is described by a kinematic boundary condition. The surface of the melt film is given
by the implicit function

h(x, t) = 0, n = ∇h, x ∈ Γa(t) (6)

By neglecting the evaporation mass flux, the normal velocity of the surface h equals the normal velocity of the
melt. Using the incompressibility∇ · v = 0 the evolution of the melt film thickness is given by

∂th+ v · ∇h = 0 (7)

3 REDUCED MODEL

To perform a scaling analysis on the equations for the melt film, the equations (2) are translated to conformal
coordinates which create a coordinate system in the melt film. The transformed equations are subjected to a
scaling analysis and expanded in a perturbation series. The final expressions are integrated into radial direction
using a quadratic ansatz for the velocity u. The resulting set of equations describes the integrated mass fluxes
mα, mz and the thickness of the melt film h.

3.1 Conformal Coordinates

Figure 4 shows the coordinate system in the melt film which defines axial (z), azimuthal (α) and radial (ν)
components. The transformation to Cartesian coordinates with origin x0 on the laser beam axis and the top
side of the part is given by

x(ν, α, z, t) = x0(t) + zêz + rm(α, z, t)êr + νêν (8)

for the position of the melting front rm and the unit vectors ê. To describe derivatives in the covariant coordi-
nate system {ν, α, z}, the Lamé coefficients (also named scale factors)

hν =

∣∣∣∣∂x∂ν
∣∣∣∣ = 1, hα =

∣∣∣∣∂x∂α
∣∣∣∣ =

√
(ν − rm)2 + (∂αrm)2, hz =

∣∣∣∣∂x∂z
∣∣∣∣ =

√
1 + (∂zrm)2 (9)

are used. For instructions how to derive the expressions for the∇-operator, see Aris [1962].

3.2 Scaling Analysis

The coordinates {ν, α, z} and the time t are scaled to typical scales for laser fusion cutting

ν = dmν
′, α = α′, z = dz′, r = w0r

′, t =
dm
v0
τ (10)

[Wandera and Kujanpaa, 2010]. The scaled velocities u = {uν , uα, uz} are given by

vν = v0uν , vα =
w0

dm
v0uα, vz =

d

dm
v0uz. (11)

The typical temperature θ maps the temperature T to the interval between ambient temperature Ta and melting
temperature Tm and the scaled pressure Π is given by

T = (Tm − Ta)θ + Ta, p =
d2 %νlv0
d3m

Π (12)
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The hierarchy of the spatial dimensions is depicted by the small parameters γ, δ and ε

ε =
dm
d
� δ =

dm
w0

∧ ε� γ =
w0

d
∧ O(δ) = O(γ). (13)

For an exemplary cutting task in stainless steel the scales are dm = 30 µm, w0 = 300 µm and d = 6 mm.
With the Reynolds number Re = v0d ν

−1
l = 224 follows:

ε = 0.005, δ = 0.1, γ = 0.05 (14)

with the relations

ε = γδ, δ2 = ε
δ

γ
= O(ε), γ2 = ε

γ

δ
= O(ε) and εRe = Re∗ = O(1). (15)

For the Lamé coefficients (9) follows

hν = h′ν , hα = w0h
′
α, hz = h′z. (16)

The primed quantities
[
ν′, α′, z′, r′m, h

′
ν,α,z

]
are now written as non-primed quantities to ensure better read-

ability. All following quantities are written as non-primed and denote the scaled (primed) quantities.

The derivatives of hz with respect to α and z contain small parameters γ2 = εγ/δ

∂νhz = 0, ∂αhz = γ2
∂zrm∂α(∂zrm)

hz
, ∂zhz = γ2

∂zrm∂
2
zrm

hz
, (17)

and the derivative hα with respect to ν contains the small parameter δ = ε/γ:

∂νhα = ε
1

γ

δν − rm
hα

(18)

3.3 Perturbation expansion

Transforming equations (2) for mass balance, momentum balance and energy to conformal coordinates and by
applying the scales denoted in (10), the resulting equations can be ordered by powers of the small parameter
ε. The resulting structure of the equations is

∂νΠ = ε2fν2 + ε3fν3 + ε4fν4 + ε5fν5 MOMENTUM(ν) (19a)
1

hα
∂αΠ = ε1fα1 + ε2fα2 + ε3fα3 + ε4fα4 MOMENTUM(α) (19b)

1

hz
∂zΠ = ε0fz0 + ε1fz1 + ε2fz2 + ε3fz3 MOMENTUM(z) (19c)

0 = ε0f∇0 + ε1f∇1 + ε2f∇2 MASS (19d)

0 = ε0fθ0 + ε1fθ1 + ε2fθ2 ENERGY (19e)

where f{ν,α,z,∇,θ} denote the terms for the corresponding equation and the power of the small parameter
ε. The hierarchy of the spatial dimensions is indicated by the ε-order of the leading term of the momentum
balance. The z-derivative of the pressure Π starts with O(1), the α-derivative with O(ε) and the ν-derivative
with O(ε2). This hierarchy allows a solution using a power series of the small parameter ε for the quantities
θ,Π and u

θ = θ0 + εθ1 + ...+ εNθN

Π = Π0 + εΠ1 + ...+ εNΠN

u = u0 + εu1 + ...+ εNuN

(20)

By substituting (20) into (19), the equations can be solved in ascending orders of ε using the solution of
preceding orders where these are required. For the order O(ε0) follows:

∂νΠ0 = 0,
1

hα
∂αΠ0 = 0,

1

hz
∂zΠ0 = fz0(u0), 0 = f∇0(u0) (21)
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and for the order O(ε1):

∂νΠ1 = 0,
1

hα
∂αΠ1 = fα1(u0),

1

hz
∂zΠ1 = fz0(u1) + fz1(u0), 0 = f∇0(u1) + f∇1(u0) (22)

The expansions for higher orders of ε are carried out analogous. The writing f{ν,α,z,∇}n(um) denotes that
the mth order of the expansion (20) of the velocity u is used for the nth term of the perturbation series (19).
The presented expansion shows that for every order of the small parameter ε four equations for four unknowns
have to be solved. For orders of ε greater than zero, solutions of preceding orders have to be added as constant
contribution to the equation of the current order. The fifth equation for the temperature θ can be solved
independently after the equations for momentum and mass balance are solved. The given formulation of the
original equations (2) is exact as long as the perturbation series is evaluated for all orders of ε.

3.4 Integral Model

To reduce the dimension of the differential equation (19), the momentum method [Kubota and Dewey, 1964]
is used. The equations (19) are integrated in radial (ν) direction, using a quadratic approximation for the
velocities uα and uz . The resulting integrated quantities mα and mz describe the mass flow in azimuthal and
axial directions for a melt film thickness h given by the kinematic boundary condition (7). A steady state
solution for low orders of ε is depicted in Figure 5. Note: To obtain integrable expressions for the leading
orders of the functions f{ν,α,z,∇}n, the expression h−1α has to be expanded into a Taylor series at ν = 0.
The derivatives ∂nν h

−1
α contain small parameters which can be assigned to higher ε-orders. Also the limiting

behavior for values of the melt film thickness h < ε has to be considered.

Figure 5. Scaled stationary solution for melt film thickness h, azimuthal mass flux mα and axial mass flux mz 
for the lowest order of the small parameter ε in 3D space. The solution for the mass flux mα is warped by the 

melt film thickness h to illustrate the shape of the melt film. The computational mesh is indicated in the 
solution for the melt film thickness h.

4 DISCUSSION

A method to reduce the computational effort in accurate solving of the incompressible Navier Stokes equations 
for a thin melt film layer in laser fusion cutting is presented in this paper. The mathematical task is transformed 
to conformal coordinates of the melt film, which allow a scaling analysis in the three spatial dimensions. The 
formulation of the task in conformal coordinates allows a dimension reduction by one using the momentum 
method. The remaining set of equations can be solved numerically on a rectangular mesh of the azimuthal 
(α) and axial (z) coordinates using a finite volume approach for the integrated mass fluxes mα  and mz  and 
the melt film thickness h . The strong advantage compared to direct numerical solutions of the melt film is the 
reduced number of degrees of freedom due to the quadratic approach for the velocity field in the melt film and 
the combined solving of the melt film thickness along with the mass fl ux. The expansion of the equations by
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the small parameter ε allows a iterative solution and neglecting higher orders if applicable to safe computation
time. A steady state solution for the lowest order of the small parameter ε provides reasonable results, the
dynamic calculation and the consideration of higher orders is currently being implemented. The expected
reduction in computational costs compared to classical finite volume solvers can be used to increase the spatial
and temporal accuracy of the solution to describe effects like the separation of ligaments from the melt film
and the propagation of perturbations.
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