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Abstract: The decision making of complex systems is challenging because of the presence of non-linearities 

and time delays in their structure and their behaviour. This decision making over the system lifetime is also 

challenged by the presence of deep uncertainty in the future behaviour of systems and in their surrounding 

environment. Traditional modelling approaches are inclined to consolidate all facts into a single ultimate model 

and to take a deterministic, optimal and predictive approach in decision making. However, they proved to be 

inadequate for coping with complexity and uncertainty challenges. We argue that an exploratory multi-method 

approach to modelling is needed for making effective and robust decisions for complex systems; the decisions 

which remain valid under a diverse range of future conditions. This paper illustrates the combined use of multi-

method modelling and exploratory analysis in the support of complex systems decision making, with an 

application to asset acquisition and management and using the case of aircraft fleet as an illustrative example. 

First, a framework is introduced for the implementation of this multi-method exploratory approach in practice, 

and the model structure, developed for the case of aircraft fleet, is explained. We then discuss how the use of 

our new approach can improve the robustness of decisions in asset acquisition and management. An initial 

exploratory analysis is performed on the model under deep uncertainty conditions and with three design 

strategies: High Acquisition – Low Maintenance, Low Acquisition – High Maintenance, and Medium 

Acquisition – Medium Maintenance. The analysis of the results shows that investing on the maintenance 

capacity of an aircraft fleet could result in more average flying hours compared to more acquisition of new 

aircraft. However, this could cause two side-effects: a higher total (acquisition and maintenance) costs and a 

wider uncertainty in the future performance of the system (in terms of average flying hours and total costs). 
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1. INTRODUCTION

Systems that operate in society, (such as food, energy, healthcare, and supply-chain systems) are influenced by 

human decisions to evolve towards the fulfilment of desired objectives, known as societal needs (de Haan et 

al., 2014). However, our understanding of these systems is limited, and their decision making is challenging. 

Human decisions often solve one issue at the expense of creating several other problems. The decisions may 

also work sufficiently at one time, but they mostly do not remain valid as new conditions unfold over time. 

These challenges are rooted in the complexity that lies in the systems’ structure. These systems comprise a 

large number of elements within multiple social, technical and economic dimensions and linked to each other 

through chains of causal relations (Bunge, 1979; Moallemi et al., 2015). Another reason for the challenges is 

the complexity of the systems’ behaviour. The systems generate non-linear patterns, side-effects and emergent 

characteristics, where the behaviour of a system cannot be explained by the behaviour of its individual elements 

(de Haan, 2006). These challenges are also due to deep uncertainties, i.e. conditions where the future states of 

the system structure are unknown or decision makers cannot agree on them (Maier et al., 2016).  

Traditional approaches to decision making in complex systems use a ‘consolidative approach’ where all known 

facts are integrated into a single unifying model (Bankes, 1993). The consolidative approach results in an 

optimised decision based on an ultimate model. It tends to maximise the understanding of system behaviour 

by modelling a high-degree of detail using the best suitable modelling technique. Also, traditional approaches 

rely on a ‘predictive approach’ to cope with the uncertainty of the systems by drawing a best-guess estimate or 

a limited number of scenarios for the future. While these approaches seem to be valid from a purely engineering 

perspective, they often end up with complicated models, an increased cost of modelling, and unreliable decision 

advice in real-world problems, which would eventually cause scepticism to decision support tools and 

frameworks. 

New approaches to decision making have emerged that suggest new ways of thinking about future decision 

making, enabling exploratory thinking, challenging decision maker’s well-established assumptions, and 

investigating the unfolding of many plausible futures. We argue that a multi-method approach to modelling 

with this new exploratory approach for the investigation of results can deal with the decision making of 

complex systems more efficiently and robustly than traditional approaches. Using multiple modelling 

approaches enable us to cover the limitations of individual techniques in coping with the complexity at different 

levels of aggregation: actors’ behaviours in a lower level of aggregation and the causal interactions of their 

accumulated behaviours in a higher level of aggregation. On the other hand, exploratory analysis can address 

the limitation of traditional scenarios where an accurate prediction of a single or few future conditions is 

impossible. It enables us to enhance the robustness of decisions by exploring an ensemble of system’s 

behaviours over a large number of assumptions about the future. Accordingly, this paper illustrates the use of 

the exploratory multi-method approach in complex systems decision making under deep uncertainty. It shows 

the application of this approach in asset acquisition and management systems and with the management of 

aircraft fleet as an illustrative example.  A combined system dynamics and discrete event approach within an 

object-oriented framework is chosen for dynamic modelling as they are methods capable of capturing 

complexities at low and high levels of aggregation (Sadsad et al., 2014; Scholl, 2001; Shafiei et al., 2012). The 

contribution of our new approach in this application is to enable decision makers to examine the future 

performance of the aircraft fleet in response to various design strategies (such as the mix of number of new 

acquisitions and capacity of maintenance lines) and under operational deep uncertainties (such as risk of loss 

during operation and variation of time between maintenances).  

In the remainder of this paper, Section 2 explains the methods used for modelling and analysis. Section 3 

presents the model structure. Section 4 shows the results of computational experiments with the model and 

then discusses the results with an exploratory framework. Section 5 concludes the paper. 

2. METHODS

The exploratory multi-method approach is a combined use of system dynamics and discrete event approach for 

modelling and the use of exploratory analysis for the investigation of the results. In implementing our suggested 

approach, the dynamics of systems’ interactions are initially conceptualised qualitatively by the engagement 

of stakeholders through expert workshops. This conceptualisation is formalised with modelling methods and 

implemented in a simulation platform. We combined the strengths of multiple methods in an object-oriented 

framework in AnyLogic 7.3. The object-oriented framework enables a rapid model building with a modular 

architecture and easily replicable to other contexts. It also facilitates the interactions of the modelling 

approaches at different levels of aggregation. On one hand, the discrete event approach allows for investigating 

the dynamics of the system caused by events and the interactions between the system entities. On the other 

hand, the system dynamics approach captures the feedback loops, created between the accumulation of system 
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behaviour, such as the interactions between the average flying hours of aircraft and their impacts on the ageing 

of the fleet (Sterman, 2000). The main challenge of system dynamics models is in their limitation to incorporate 

heterogeneity and to develop dynamic model structures (Moallemi et al., 2015). The main challenge for the 

discrete event is the limited treatment of systems delays and feedback loops. For comparative studies between 

SD and DES, readers are referred to (Chahal & Eldabi, 2008; Tako & Robinson, 2010). The model’s objective 

is to provide users with a library of modules that allow users to design a capability and constituent resources 

(e.g. personnel), and examine the performance of a capability, under a range of management options and 

scenarios over the capability lifecycle. The model has an object-oriented architecture, which include three types 

of software components:  

(1) Decision-making component represent library of decision rules that can be used to control the processes

that influence the capability through its lifecycle (i.e. controllers).

(2) Physical asset component is a  blueprint of the most likely physical pathways a particular resource type can

take (i.e. material, personal, personnel). The module is includes stock-flow representation of the processes

that influence the availability for each basic resource type (See next section for details).

(3) Performance measures component is a library of functions that represent relevant performance indicators

(e.g. total flying hours, and number of aircraft available for operation).

Detailed description of the model’s architecture can be found in (ElSawah & Ryan, 2016). When the model is 

developed, exploratory analysis is used to investigate the future performance of the systems in response to 

different design decisions and under uncertainty. Exploratory analysis is a new way of thinking about the future 

of systems under deep uncertainty; a situation where we do not or cannot agree about the future values, and we 

cannot represent them with a probability distribution (Lempert et al., 2003). Exploratory analysis studies the 

future behaviour of systems through ‘exploration’ and by answering ‘what could happen?’ instead of through 

‘prediction’ and ‘what will happen?’ (Maier et al., 2016).To conduct exploratory analysis, the key uncertainties 

of the system and their possible ranges of variation are identified. Monte Carlo experiments are performed 

using the model and for the identified uncertainties. Exploratory analysis then uses statistical and data-mining 

techniques to interpret the extensive experiments and to suggest plural and conditional decision advice (J. H. 

Kwakkel & Pruyt, 2013). 

3. MODEL DESCRIPTION

In this paper, we use aircraft fleet management as an illustrative example. The model is designed in eight 

modules (see Figure 1): Design Variant, Acquisition, Flying Hours Allocation, Deep Maintenance (DM), 

Operational Maintenance (OM), Capability Assurance Program (CAP), Ageing and Retirement, and Loss. 

Each component is explained briefly as follows. 

• Design Variant: Each variant represents different design variables specified by decision makers—for

example, aircraft type, fleet size, acquisition and retirement plans, maintenance schedules, and operation

conditions. Design Variant provides the required inputs, from decision makers, for all other modules.

• Acquisition: This module analyses the new purchases and the cost associated to them. The number of

acquired aircraft is entered initially by decision makers as a variable of Design Variant. Acquisition adds

additional aircraft to the fleet at the planned time during simulation. It then analyses the impact of new

additions on the system performance.

• Flying Hours Allocation: This module determines the flying hours assigned to each aircraft based a

required rate of effort that decision makers specify as a variable of Design Variant. It also uses a simple

stock and flow structure to model the accumulation of the flying hours of aircraft over time to calculate the

total flying hours.

• Deep Maintenance (DM) and Operational Maintenance (OM): DM and OM are condition-based

activities with a same structure. This module models the time that an aircraft is due for maintenance

(scheduling), the waiting queues for maintenance, and the maintenance process. It also analyses the cost

associated to maintenance activities. The module uses inputs from Design Variants—for example, time

between maintenances, the time spent by an aircraft in maintenance, and the available maintenance

capacity.

• Capability Assurance Program (CAP): CAP is an upgrade program which assures the effectiveness of

aircraft throughout its life. CAP affects the aircraft’s total number of flying hours by bringing the aircraft’s

state back to the new condition or to a particular state determined by the decision maker. This module

models the CAP process (such as the number of aircraft in CAP and the waiting queues for CAP) to examine

the effects of various CAP arrangements on fleet performance.

• Ageing and Retirement: This module uses a system dynamics stock and flow structure to model the ageing

of fleets according to an exponential decay function over the expected lifetime of the fleet. It differentiates
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between new, middle age, and old conditions of aircraft. The ageing process is influenced by the maximum 

flying hours and the required rate of effort, set by decision makers as a variable of Design Variant. Ageing 

also models the impact of aircraft’ retirement considering the time when the total flying hours exceed the 

maximum flying hours. 

• Loss: This module analyses the impact of the risk of loss of aircraft, during operation, on the system

performance.
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Figure 1. The high-level model architecture 

4. THE RESULTS OF EXPLORATORY ANALYSIS

The future performance of the system (the aircraft fleet, in this case) varies depending on the chosen design 

strategies, i.e. the combinations of different values for new acquisition and maintenance capacity. The question 

of interest is how different strategies affect the performance of the system. The desire of decision makers to 

reach a deterministic picture from the impacts of different strategies is not possible under deep uncertainty 

(Stirling, 2010). Simplifying uncertainties for the sake of having definitive conclusions would result in 

apparently appealing but practically erroneous advice. We adopted exploratory analysis to avoid this issue and 

to present plural and conditional advice to assist decision makers in choosing between design strategies.  

We used the model, developed in Section 3, to explore the impact of three maintenance and acquisition 

strategies (see Table 1) on the performance of the system: High Acquisition – Low Maintenance; Medium 

Acquisition – Medium Maintenance; and Low Acquisition – High Maintenance. The performance is expressed 

in terms of the total cost of new acquisition and maintenance, the number of aircraft in service, and the size of 

waiting queues for deep and operational maintenances. A dataset was compiled from different sources for 

model simulations. Seven hundred Monte Carlo experiments were performed with AnyLogic for the specified 

range of uncertainties (see Table 2) over a model time-horizon of 800 weeks. The experiments capture a wide 

space of conditions within which the system can operate. We then used a Python package, known as the EMA 

Workbench (J. Kwakkel, 2016), for the exploratory analysis of the experiments. Figure 2(a) and Figure 2(b) 

represent the average flying hours of the aircraft in a fleet and their total maintenance and acquisition costs 

under different strategies. We used histograms with kernel density estimates (KDE) to represent the diversity 

of the system performance in each variable.  
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Figure 3 shows the distribution of the number of aircraft in-service and the size of waiting queues for deep and 

operational maintenance, for all time, across experiments and for each strategy. We represented the state of 

these variables in each single experiment with a KDE. What we are interested in Figure 3 is the peak (i.e. the 

highest probability of the number of aircraft or the size of queues in lifetime) and how the experiments are 

populated around each the peaks (i.e. the highest likelihood for the number of aircraft or the size of queues 

across all experiments). 

Table 1. Number of acquisition and size of maintenance capacity in each design strategy 
Parameters Strategy I: High 

Acquisition – Low 

Maintenance 

Strategy II: Medium 

Acquisition – Medium 

Maintenance  

Strategy III: Low 

Acquisition – High 

Maintenance 

Number of new acquisition 6 4 2 
CAP capacity 0 1 3 

OM capacity 1 2 3 

DM capacity 1 2 3 

Table 2. List of uncertain parameters and their ranges of variation (+-50%) 
Uncertain parameter Range 

The risk that that an aircraft is lost during operation 0.00065 – 0.00195 (-) 

The life time of aircraft 93600 – 280800 (hour)  

A minimum and maximum for total required flying hours with a uniform distribution 30 – 91; 42 – 126 (-) 

Expected time spent by an aircraft in CAP 12 – 36 (week) 

The time between CAP events 10 – 30 (week) 

Expected time spent by an aircraft in DM 8 – 12 (week)  
The time (flying hours) between DM events 500 – 1500 (hour) 

Expected time spent by an aircraft in OM 2 – 5 (week) 

The time between OM events 125 – 375 (hour) 
Cost of OM 100,000 – 2,000,000 ($) 

We assumed that the decision makers in our example have a number of objectives: increasing the average 

flying hours of the fleet while minimising the costs associated with it; maintaining a high number of aircraft 

in-service while avoiding long waiting queues in maintenance lines. Based on the results of exploratory 

analysis in the pre-defined strategies (see Figure 2 and 3), none of strategies can satisfy all objectives at the 

same time. The performance of three strategies can be analysed by making a trade-off among the fulfilment of 

multiple objectives. As an example, we analysed this performance trade-off in Strategy III (Low Acquisition – 

High Maintenance) as follows: 

• First: investing in maintenance capacity could be a more effective strategy for improving the availability

of in-service aircraft and the average flying hours compared to buying new aircraft. This could also reduce

the waiting queues for maintenances. The total aircraft in-service (see

• Figure 3(a)) in Strategy III (with a high maintenance capacity) is distributed around three with a variation

to 10 aircraft while the distribution of aircraft in-service in Strategy I (with a high acquisition rate) has a

mean of one and can vary to a maximum of six aircraft. Also, the average flying hours in Strategy III (see

Figure 2(a)) has a distribution populated around a higher value (mean: 8000 hours) compared to Strategy I

(mean: 2000 hours). This behaviour can be explained by the fact that the acquisition of new aircraft

increases the pressure on the maintenance lines and creates a buffer of long waiting queues. The longer

queues in a strategy with high numbers of acquisitions are evident in 3(b) and 3(c) where there is a local

maximum of 10 and 12 aircraft in deep and operational maintenance queues.

• Second: a design strategy with emphasis on maintenance capacity could end up with higher total costs

compared to a strategy with a larger number of new acquisitions. This is reflected in Figure  where the

mean of total costs in Strategy III is around $900 billion compared to about $500 billion total costs in

Strategy I. The extent to which this increase of costs could work against the desirability of Strategy III

depends on the sensitivity of decision makers to different objectives in their decision making process.

• Third: a design strategy with larger maintenance capacity could result in a wider uncertainty in the future

performance of the system, in terms of average flying hours and total cost. The implication of this is that

increasing the maintenance capacity is not a preferred strategy if decision makers expect more deterministic

advice. Figure 2(a) shows that Strategy III has a higher mean of average flying hours compared to the other

strategies, but it is subject to wider uncertainty, a range from 2000 to 30000 hours (where this varies

between around 1000 to 10000 in Strategy I).
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Figure 2(a). Histogram and KDE for average flying 

hours of the aircraft (hours)

Figure 2(b). Histogram and KDE for total 

acquisition and maintenance cost ($billion) 

(a)                                                   (b)                                                  (c) 

Figure 3. Kernel density estimates for the number (a) of aircraft in service, (b) in the deep maintenance 

queue, and (c) in the operational maintenance queue, in a period of 800 weeks 

5. CONCLUSIONS

The decision making of complex systems is challenging because of their complexity-driven characteristics and 

the uncertainties in their surrounding environment. We discussed that a traditional consolidative system 

338



Moallemi et al., Dynamic modelling of complex systems under deep uncertainty using an exploratory multi-

method approach 

modelling with a predictive/deterministic approach for the future-oriented analysis of results is complicated, 

costly and erroneous. We argued that: (1) a multi-method approach to modelling can improve the limitation of 

each separated modelling techniques in explaining system complexity, and (2) an exploratory analysis of 

modelling results can cope with deep uncertainty and propose plural decision advice that work under diverse 

plausible futures. To explain our proposed exploratory multi-method modelling approach, a combined discreet 

event and system dynamics model was developed for asset acquisition and management systems with an 

illustrative example in aircraft fleets. We performed an exploratory analysis for system’s uncertainties and 

concluded that a design strategy based on increasing the size of maintenance capacity could lead to higher 

average flying hours in a fleet but also higher total costs compared to a strategy with the larger number of new 

acquisitions. A limitation of the current analysis is in a way that we proposed decision advice by comparing 

design strategies with three sets of pre-defined values for the number of new acquisition and size of 

maintenance capacity. Decision makers, in reality, do not have presumed strategies in advance. Instead, they 

expect the strategies to be suggested by decision support tools. A future research is to show how our exploratory 

multi-method approach can suggest robust design strategies by making a trade-off between the number of new 

acquisitions and the size of maintenance capacity, in the process of exploratory analysis.  
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