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Abstract: We consider the well-known uncapacitated multiple allocation hub location problem (UMAHLP).
Hub location problems are widely used to model and solve problems that arise from network telecommunica-
tions, transport networks, and delivery systems. Due to the high complexity of hub location problems, different
approaches have been employed to develop efficient algorithms. We apply a modified Benders decomposition
method for solving large UMAHLP instances exactly. Since the derived subproblems possess an inherent high
degeneracy, the implementation of Benders method for UMAHLP usually suffers from slow convergence. We
adapt an existing state-of-the-art method in the literature, and apply a novel method of accelerating this ap-
proach. This is performed with a view to addressing the slow convergence issues. Our approach improves the
current best results by more appropriately choosing parameters for the accelerated Benders method.

Furthermore, as observed in the literature, the exact solution of subproblems can add an extra complexity to
the Benders approach for UMAHLP. We reformulate the subproblems and solve them more efficiently using
a minimum cost network flow algorithm. Our computational results show that our acceleration procedures
together with our different approach to solve subproblems are computationally efficient. According to our
computational results, we are able to solve larger UMAHLP instances with up to 200 nodes in less than 2
hours. On average, our approach improves computational times of around two third of tested instances by
44% over current approaches. Also it requires around 10% fewer Benders iterations in our computational
experiment.

Keywords: Hub location problem, Benders decomposition methods, minimum cost network flow problem

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

340



H. Mokhtar, et al., A new Benders decomposition acceleration for large scale HLP

1 INTRODUCTION

Hubs are employed in several network design contexts that benefit from the economy of scale to fulfil flow
requests between nodes. Hubs are used in the design of, for example, airline networks, parcel delivery net-
works, and telecommunications networks. Flow between nodes is routed via hubs, where each hub acts as a
consolidator and forwarder. The flow between the hubs is discounted because of the large volumes that accrue
from flow consolidation. In parcel/mail networks, for example, mail is collected from individual postcodes
(access nodes or demand nodes), consolidated and sorted at a mail sorting centre (a hub) and transferred in
larger vehicles to another mail sorting center (hub) before it is distributed to the destinations (access nodes).
Hub location problems (HLP) then determine the location of the hubs and the allocations of access nodes to
the hubs. Thus, as pointed out by Campbell and O’Kelly (2012), through the use of hubs, origin-destination
flows/demands can be fulfilled using a smaller number of links, while delivering economies of scale. Usually it
is assumed that (a) the hubs do not have capacity/flow restrictions, and (b) the hubs are fully connected. A hub
location problem is single-allocation if each access-node must be allocated to exactly one hub, or multiple-
allocation if there is no restriction on the number of allocations. Then the uncapacitated multiple allocation
hub location problem (UMAHLP) is the hub location problem in which each access-node can be allocated to
multiple hubs. UMAHLP is an NP-hard combinatorial problem in general.

The research field of hub location problems commenced though the seminal works of O’Kelly (1986, 1987).
Following this, a few variations of hub location problem were introduced and formulated by Campbell (1994,
1996). For over two decades many research works have been carried out to improve our ability to solve larger
and more varied and difficult problems of hub location problems. A well-studied hub location problem in
the literature is UMAHLP. For example, Mayer and Wagner (2002) enhanced the convergence of branch and
bound method, and Ernst and Krishnamoorthy (1999) formulated a compact model for this class of problems.
For the most recent surveys on UMAHLP see Farahani et al. (2013), Alumur and Kara (2008) and Campbell
et al. (2002).

Recently, modified Benders decomposition methods have been developed, with remarkable success, for solv-
ing some classes of HLPs. Through these novel methods it is now possible to solve reasonably large instances
of a certain class of HLPs to optimality. Specifically, Benders decomposition is shown to be effective for solv-
ing large instances of hub location problems (see de Camargo et al. (2008); Contreras et al. (2011)). In many
cases degeneracy in the subproblems of the method could lead to slow convergence of the method. This issue
was noticed and addressed by Magnanti and Wong (1981) who introduced the generation of ‘pareto optimal’
cuts using some ‘core point’. This improvement is employed in many implementations of the Benders method,
including the one by Contreras et al. (2011) for HLP with multiple allocation. Whereas Contreras et al. (2011)
used this approach for generating pareto-optimal cuts, in the current paper we build on the core work of the
approach by Magnanti and Wong (1981). We enhance this approach for UMAHLP by choosing better core
points and generating stronger cuts.

In addition, de Camargo et al. (2008) and Contreras et al. (2011) pointed out that solving subproblems of HLP
to generate cuts is computationally expensive. In this paper, we come up with a more efficient approach for
solving subproblems to generate cuts by converting the subproblems to minimum cost network flow problems.
Our approach has shown to be remarkably effective to solve large instances of the uncapacitated single- and
multiple allocation p-hub median problems (see Mokhtar et al. (2017b)), and the uncapacitated 2-allocation
p-hub median problem (see Mokhtar et al. (2017a)). Through the use of more effective Benders cuts and more
efficient solution of subproblems, our method results in fewer iterations and faster running times in most cases.

2 PROBLEM STATEMENT

We are given a set of n nodes N = {1, 2, . . . , n}, distances between each pair of nodes, dij , and a positive
integer p with p ≤ n. We assume that triangle inequality for distances of nodes holds. We consider a complete
digraph G = (N,A), where A = N × N so that the weight of each link is the distance of its endpoints.
We assume that hubs are connected through a complete graph on the set of hubs, and non-hub nodes are only
connected to hubs. For every pair of nodes (i, j), Wij ≥ 0 denotes the amount of flow demand from i to j.

In practice, the actual cost of flow between different types of nodes is computed with different cost coefficients:
collection coefficient corresponds to flow from a non-hub to a hub, distribution coefficient corresponds to flow
from a hub to a non-hub, transfer coefficient corresponds to flow between hubs. These are denoted by χ, δ
and α, respectively. Usually α ≤ 1, χ ≥ α and δ ≥ α in practical applications.

We may assume that all flow must be routed through at most two (not necessarily distinct) hubs since using
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two hubs is always cheaper than using three or more hubs (because of the triangular inequality assumption).
Therefore, any path between i and j must contain three links, (i, k), (k, l), and (l, j), where i and j are
connected to hubs k and l respectively. We denote such a path by i-k-l-j. Let xijkl be the fraction of flow
request Wij that is sent on the i-k-l-j path, for all i, j, k, l ∈ N . Let binary decision variable hk = 1 if node k
is chosen as hub, and hk = 0 otherwise, for each k ∈ N . Then the cost of using i-k-l-j path, considering the
cost coefficients of different link types, is Cijkl = χdik+αdkl+δdlj . Furthermore, the establishment of node
k ∈ N as a hub is associated to a fixed cost Fk. An integer linear programming formulation of UMAHLP that
was first introduced by Campbell (1994) is presented below:

min
∑
k∈N

Fk hk +
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

Cijkl Wij xijkl (1)

s.t. ∑
k∈N

∑
l∈N

xijkl = 1, ∀i, j ∈ N (2)∑
l∈N

xijkl ≤ hk, ∀i, j, k ∈ N (3)∑
k∈N

xijkl ≤ hl, ∀i, j, l ∈ N (4)

hk ∈ {0, 1}, xijkl ≥ 0 ∀i, j, k, l ∈ N. (5)

In the above formulation, the set of constraints (2) fulfils commodity flow requests for all pairs of nodes, and
set of constraints (3)-(4) ensures flows are routed only through hubs. The objective function (1) represents
total cost of hub establishments and transfer costs.

The large number of variables and constraints corresponding to the flows between pairs of nodes leads us to
the idea of employing a Benders decomposition approach.

3 BENDERS DECOMPOSITION

The Benders decomposition method (Benders (1962)) is a partitioning algorithm which has been widely used
for solving a wide range of difficult problems, including hub median problems. In the Benders decomposition
method, the original problem is decomposed into a master problem and a subproblem (or a few subproblems).
The master problem MP consists of integer variables and corresponding constraints, and the subproblem SP
consists of the remaining variables and constraints. MP and SP are solved iteratively in a dependant manner. If
SP is not feasible, then the solution of MP is not feasible for original problem, and it will be excluded from MP
feasible region by a feasibility Benders cut which is generated by the dual of SP. Else, an optimality Benders
cut will be added to MP to improve the feasibility of the current MP solution, until no further improvement is
needed.

In order to apply Benders decomposition method to UMAHLP, the location variables h = (hk)k∈N are fixed to
some ĥ in each iteration. We then obtain a linear programming subproblem in the iteration, which is the prob-
lem of optimal routing between n2 pairs for specified hubs by ĥ. The subproblem can be further decomposed
into n2 subproblems because we can find an optimal routing for each pair of nodes separately/independently.
This decomposition results in n2 Benders cuts, which may provide tighter cuts for the MP, and should ideally
result in faster convergence. The dual of SP for any pair of nodes (i, j) ∈ N2, denoted by DSij , is as follows:

DSij : max fij −
∑
k∈N

ĥkuijk −
∑
l∈N

ĥlvijl (6)

s.t.
fij − uijk − vijl ≤ Cijkl Wij , ∀k, l ∈ N (7)
uijk, vijl ≥ 0, fij ∈ R ∀k, l ∈ N. (8)

By an optimal solution (f̂ij , ûij , v̂ij) of DSij for each (i, j) ∈ N2, a Benders cut is generated. Thus, in each
iteration we obtain n2 Benders cuts:

ηij ≥ f̂ij −
∑
k∈N

hkûijk −
∑
l∈N

hlv̂ijl ∀i, j ∈ N, (9)
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where ηij is a real non-negative variable. We add a trivial constraint to MP to guarantee the feasibility of SPs
for any solution ĥ, and avoid feasibility Benders cuts for UMAHLP. With this constraint, the MP is:

MP: min
∑
k∈N

Fk hk +
∑
i∈N

∑
j∈N

ηij . (10)

s.t.
∑
k∈N

hk ≥ 1 (11)

(9),
hk ∈ {0, 1}, ηij ≥ 0 ∀k, i, j ∈ N. (12)

The optimal solution of DSij is not unique since SP is degenerate. The strength of Benders cuts (9) is de-
pendent on the choice of optimal solutions of DSij . We maximise a weighted summation of dual variables
among optimal solutions of DSij by defining a slope for the objective function of a second LP to generate
different cuts. Let mik,mjl for k, l ∈ N be non-negative real parameters and m0 be a real parameter. For
(i, j) ∈ N ×N , define

DLij : max m0 fij −
∑
k∈N

mikuijk −
∑
l∈N

mjlvijl (13)

s.t. fij −
∑
k∈N

ẑikuijk −
∑
l∈N

ẑjlvijl = δ̂ij (14)

(7)− (8),

where δ̂ij is the optimal value of DSij .

The strength of our generated Benders cuts is directly related to the slope of the objective function of the
above SPs. When (h′k)k∈N is an interior point of the convex hull of MP (called a ‘core point’), and m0 = 1,
we obtain an acceleration of the Benders method proposed by Magnanti and Wong (1981), which is shown to
generate ‘pareto optimal’ cuts. The cuts that are generated by their method, however, might not be the strongest
cuts in general. We observed that in most cases (across a few test implementations we ran) a modification of
their method – in which the objective function is minimised – results in stronger cuts, fewer number of branch
and bound iterations, and faster convergence. So pareto optimality is not sufficient to measure the strength of
Benders cuts.

Here, we set mij = (mi1, . . . ,min,mj1, . . . ,mjn) for DLij which may not be equivalent to a core point, but
may result in stronger cuts for UMAHLP in general:{

mik = Γi/(n− p) and mjk = Γj/(n− p) if ĥk = 0

mik = mjk = 1, if ĥk = 1,
(15)

for some Γi,Γj > 0. By this combination, we control the number of non-zero coefficients of location variables
hk in Benders cuts which are associated to i-j paths through non-hubs shorter than i-k̂-l̂-j, where i-k̂-l̂-j is
the shortest path through hubs specified by ĥ. We show in next section that, on average, our approach for such
choice of mij substantially reduces the number of iterations and the computational time.

Another issue we address in this paper is the computationally expensive generation of Benders cuts. By
exploiting the structure of SPs, we reformulate SPs as minimum cost network flow problems on an auxiliary
network with 2n + 2 nodes and n2 + 2n arcs. Let S = Γi + Γj −m0, and H0 = {k ∈ N : ĥk = 0}. Then
the dual of DLij is equivalent to the following minimum cost network flow problem:

min
n∑
k=1

χdik Wij rsik +
n∑
k=1

2n∑
l=n+1

αdkl Wij rkl +
2n∑

l=n+1

δd(l−n)j Wij rltj (16)

s.t.
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k∈N

rsik = Γi + Γj (17)

2n∑
l=n+1

rlk − rsik = 0, k = 1, . . . , n (18)

rltj −
∑
k∈N

rkl = 0, l = n+ 1, . . . , 2n (19)

−
2n∑

l=n+1

rltj = − Γi − Γj , (20)

rsik ≤ mik k ∈ H0 (21)
rsik̂ ≤ mik̂ + S (22)

r(l+n)tj ≤ mjl l ∈ H0 (23)

r(l̂+n)tj ≤ mjl̂ + S (24)

rsik, rltj , rkl ≥ 0 (25)

Then using an optimal solution of the above problem, we can obtain a feasible and optimal solution for DLij
efficiently. Therefore, using an efficient algorithm to solve the above problem, the Benders cuts can be gener-
ated more efficiently.

4 COMPUTATIONAL RESULTS

We compare the computational results of our modified Benders method and existing Benders approaches
for UMAHLP in the literature. Table 1 presents the computational results on instances with n nodes and
transfer coefficient α in the Australia Post data sets, which was introduced to the literature by Ernst and
Krishnamoorthy (1996). Our algorithms were coded in C/C++ using CPLEX 12.7, and our computational
experiments were performed on a PC with 8 cores of 3.6 GHz speed and 32G RAM with time limit of 2 hours.
We excluded computational results by branch and bound by CPLEX from our table since this method is not
able to load problems with n ≥ 60 to our machine.

Following the computational settings in Contreras et al. (2011), we set collection and distribution factors
χ = δ = 1, and transfer factor α ∈ {0.2, 0.5, 0.8} to compare computational results on similar problems
with existing benchmark results. Also we used fixed cost data sets (‘loose’ version) in the AP data sets, and
generalised a method by Ernst and Krishnamoorthy (1996) of generating smaller size instances to produce
fixed cost data for larger instances. By introducing a factor, we can vary the relative magnitude of the fixed
costs with respect to the transfer costs. This factor eventually affects the number of located hubs for a problem.
In other words, we experiment solving problems in which the transfer cost for (i, j) through hubs k and l is
changed to Cijkl/TCF for some TCF ∈ {111, 190, 500}. Contreras et al. (2011) also used factors to control
the balance of fixed costs and transfer costs, which unfortunately we are unable to reproduce for the AP data
set. However, we chose TCF so that the number of located hubs for the same problems are almost the same
(see Table 1). In Table 1, ‘Hubs’, ‘B-itr’, ‘time’, and ‘t’ respectively indicate the number of hubs, the number
of Benders iterations, the computational time (sec), and that the corresponding method was not able to solve
within the time limit. The computational results of existing benchmark results in Table 1 are those that are
reported by Contreras et al. (2011). We point out that the comparison in Table 1 is only between Benders
approaches. Contreras et al. (2011) further used a heuristic algorithm and an elimination test to improve their
computational results. Our objective here is merely to test the efficiency of our new approaches for Benders
acceleration and solution of the subproblems for UMAHLP.

In our approach we choose Γi = 1.2, Γj = 0.8, and m0 = 1 in (15). Our chosen core-point is different
from the core-point chosen by Contreras et al. (2011), where they set hk = 0.1 for k ∈ N . Furthermore,
they did not solve SPs to optimality since they observed that it was computationally expensive and hence they
used approximate solutions for SPs. However we modelled SPs as minimum cost network flow problems and
efficiently solved them by network simplex method to optimality. According to Table 1, our acceleration of
Benders decomposition method is very efficient for solving UMAHLP, and our choice of core points improves
the convergence rate. Our method outperforms results by de Camargo et al. (2008) in all tested instances, and
also the results by Contreras et al. (2011) for around two thirds of the instances in terms of computational time.
Additionally, our approach requires fewer Benders iterations in comparison with the approach by Contreras
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Table 1. Computational results of Benders approaches for UMAHLP on Australia Post data sets

de Camargo et al. (2008) Contreras et al. (2011) Accelerated Benders method

n α TCF Hubs time B-itr time TCF Hubs B-itr time

25 0.2 2 2 0.24 5 0.11 500 1 4 0.04
5 5 4.01 11 0.77 190 5 13 0.24

10 8 73.00 17 1.97 111 7 9 0.14

0.5 2 2 0.20 5 0.13 500 1 3 0.03
5 4 1.76 15 1.03 190 5 12 0.12

10 6 10.78 13 1.18 111 6 10 0.15

0.8 2 2 0.19 5 0.08 500 1 3 0.03
5 2 0.56 7 0.18 190 2 6 0.08

10 5 2.54 10 0.55 111 5 10 0.12

50 0.2 2 2 4.18 8 1.11 500 2 8 1.06
5 4 20.38 11 2.58 190 4 9 1.64

10 7 624.41 20 15.13 111 6 9 1.70

0.5 2 2 2.65 6 0.82 500 2 7 0.90
5 3 12.04 13 3.12 190 3 13 2.40

10 6 67.16 16 6.95 111 6 9 1.77

0.8 2 2 2.33 6 0.08 500 2 7 0.58
5 2 5.35 8 1.22 190 3 10 1.12

10 5 35.04 17 6.73 111 4 9 1.54

75 0.2 2 2 27.43 9 5.20 500 2 7 4.22
5 4 73.94 10 7.00 190 4 11 10.88

10 7 2208.01 16 16.23 111 6 12 31.76

0.5 2 2 21.40 8 4.47 500 2 5 2.40
5 4 53.98 12 6.99 190 2 6 2.78

10 7 129.12 11 7.15 111 4 9 8.62

0.8 2 2 17.02 9 4.50 500 2 6 2.94
5 2 50.29 12 6.08 190 2 9 4.99

10 5 77.54 13 7.19 111 4 9 6.70

100 0.2 2 2 210.72 7 14.64 500 2 8 15.90
5 4 1364.60 23 69.15 190 4 15 86.47

10 7 t 23 170.00 111 7 18 117.90

0.5 2 2 165.75 7 13.66 500 2 6 9.56
5 3 787.01 20 38.85 190 4 16 54.09

10 6 4586.82 24 113.32 111 5 14 55.86

0.8 2 2 126.38 6 12.91 500 2 6 8.65
5 2 259.70 11 17.54 190 3 8 11.17

10 4 1198.83 20 38.38 111 4 12 23.87

125 0.2 2 2 747.44 10 47.20 500 2 9 42.37
5 4 2406.95 12 52.92 190 4 16 196.47

10 7 t 25 170.82 111 6 16 416.41

0.5 2 2 503.83 6 36.63 500 2 6 25.83
5 4 2150.63 16 53.26 190 3 13 144.24

10 5 t 25 137.54 111 4 19 449.83

0.8 2 2 459.49 6 35.70 500 2 8 22.02
5 3 1061.16 9 38.06 190 2 13 56.12

10 4 t 13 45.66 111 4 18 128.48

150 0.2 2 2 2360.82 12 138.66 500 2 9 151.66
5 4 t 16 143.40 190 4 11 309.81

10 7 2360.82 25 455.93 111 6 18 1164.53

0.5 2 2 1814.04 6 91.57 500 2 9 78.91
5 4 t 22 155.32 190 3 13 364.93

10 6 t 20 202.96 111 6 18 856.72

0.8 2 2 1278.42 5 82.82 500 2 10 73.18
5 4 3816.60 15 107.40 190 3 11 89.02

10 6 6638.50 16 123.39 111 4 18 309.62

175 0.2 2 2 2062.87 7 287.08 500 2 5 48.34
5 2 t 15 276.74 190 4 8 115.15

10 5 t 32 1031.62 111 6 18 958.11

0.5 2 2 1776.36 5 210.40 500 2 8 143.98
5 4 6575.61 10 203.82 190 3 20 1197.45

10 6 t 24 391.21 111 4 15 2507.41

0.8 2 2 1425.14 4 172.08 500 2 6 35.75
5 3 3621.65 8 177.84 190 3 10 62.89

10 4 t 9 180.13 111 4 10 104.66

200 0.2 2 2 t 8 656.69 500 2 7 291.82
5 4 t 12 463.78 190 4 11 1821.07

10 7 t 47 1271.34 111 7 15 3971.43

0.5 2 2 t 6 419.86 500 2 9 325.67
5 4 t 16 408.06 190 4 13 1023.05

10 6 t 39 2436.64 111 4 18 2232.29

0.8 2 2 t 5 332.53 500 2 6 188.61
5 3 t 13 362.31 190 4 16 684.85

10 4 t 21 455.65 111 4 15 1431.81
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et al. (2011) for around two thirds of the tested instances. Specially our approach is most efficient for instances
with fewer hubs, which is rooted in the stress of our cut generation method on non-hub variables. Improvement
of this method for larger number of hubs is the objective of future works.
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