
Uchronia, a software module for efficient handling of 
multidimensional time series and use in ensemble 

forecasting 

J.-M. Perraud a, R. Bridgart b, J.C. Bennett b and D.E. Robertson b 

a CSIRO Land and Water, Canberra, Australian Capital Territory 
b CSIRO Land and Water, Clayton, Victoria 

Email: jean-michel.perraud@csiro.au  

Abstract: Ensemble prediction techniques have been shown to produce more accurate predictions than 
single prediction runs as well as being able to formally quantify prediction uncertainty in a range of scientific 
applications. Statistically meaningful quantification of uncertainty can require very large ensembles, with 
associated increases in computation and data storage, particularly for predictions in the form of time series. In 
addition, the verification of statistical properties of an ensemble, such as the reliability of the ensemble 
spread, requires very long retrospective verification periods. This presents logistical and conceptual 
challenges for researchers and practitioners still transitioning from simulations based on deterministic, single 
instance realisations. A software system for handling such ensemble time series has to address many needs, 
notably: (i) retrospective ensemble predictions can quickly require several hundred gigabytes of data, and 
may need to be accessible from workstations or high performance parallel compute clusters; (ii) users should 
still have an interactive, responsive experience when processing data, with little concern for on-disk logistics 
- a well-known principle that remains unsatisfactory in many implementations; and (iii) data infrastructure 
must promote strong data identity and versioning to help sustain a reproducible simulation outcome.  

This paper presents an ensemble time series software infrastructure that has stemmed from needs in 
streamflow forecasting research, with potentially much wider applicability. The core entities of time series 
and ensembles are implemented in portable C++ code, using template metaprogramming. This permits a 
unified but versatile implementation for handling time series of various dimensional complexity. Time series 
elements can thus range from an atomic value, typically numeric, all the way up to a time series of ensemble 
forecasts. Object-oriented design patterns are used to allow for RAM caching of large data. A C API permits 
convenient data manipulation from a variety of interactive higher-level technical computing languages such 
as Python and R. Time series can be accessed via a time series library. Time series creation and retrieval 
relies on string identifiers and metadata, rather than paths to data files which are prevalent. The libraries can 
bring otherwise disparate data into a consistent data set for the simulation or analytical purposes. We 
envisage the time series library facilities as a solid basis for use in conjunction with federated data 
provenance infrastructure. 

Keywords: Ensemble streamflow forecasting, time series, interoperability 

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

424



Perraud et al., Design patterns and infrastructure in a software library with efficient handling of 
multidimensional time series 

1. INTRODUCTION 

Ensemble prediction techniques have been shown to produce more accurate predictions than single prediction 
runs as well as being able to formally quantify prediction uncertainty in a range of scientific applications. 
Statistically meaningful quantification of uncertainty can require very large ensembles, with associated 
increases in computation and data storage, particularly for predictions in the form of time series. In addition, 
the verification of statistical properties of an ensemble, such as the reliability of the ensemble spread, requires 
very long retrospective verification periods.  

The semantic meaning of a large simulation and big data footprint is not an absolute but relative to the state 
of the art in a particular domain. Ensemble prediction techniques presents logistical and conceptual 
challenges for researchers and practitioners in hydrology still transitioning from simulations based on 
deterministic, single instance realizations.  

In this paper, we present a software module for handling multidimensional time series data, named uchronia. 
This module stems from existing and nascent needs in ensemble prediction techniques, for use both in 
research and operational contexts. Usage in a research context, such as retrospective ensemble predictions, 
can quickly require several hundred gigabytes of space for data, and need to be suitable for a researcher’s 
workstations but also scale to a high performance parallel compute cluster. Users should still have an 
interactive, responsive experience when processing that data, with little concern for on-disk logistics, 
something that remains unsatisfactory in many implementations. The data infrastructure must promote strong 
data identity and versioning to help sustain a defensible and reproducible simulation outcome. 

Uchronia has stemmed primarily from work on a software for ensemble streamflow forecasting (Perraud et 
al. 2015). Since that publication it has been further engineered to fully decouple it from the modelling and 
simulation part of the software stack, and uchronia is now a standalone, modern, C++ library technically 
reusable in other domains dealing with multidimensional time series. Our intention is to have uchronia 
accessible by a broader community once licensing and governance arrangements are agreed open by project 
owners; in the meantime we invite the interested reader to contact the lead author of this paper. 

2. OVERVIEW OF RELATED SOFTWARE 

This section gives some background context that informed the design of uchronia, focusing on the existing 
software that was considered as candidate for reuse or design guidance in handling multidimensional time 
series for semi-distributed modelling and simulation. It is not a comprehensive review of software systems 
for all the facets of time series handling.  

Popular data science programming environments have, by and large, adequate support for time series, 
especially point multivariate series. The R ecosystem has several time series handling packages 
(https://www.r-pkg.org/ctv/TimeSeries), notably xts, which can handle multivariate time series. In the Python 
ecosystem, the functionalities offered by the pandas (http://pandas.pydata.org) and numpy 
(http://www.numpy.org) packages have gained popularity and appear to be a de facto standard for general-
purpose time series and/or multidimensional data handling. The multidimensional capabilities of numpy 
arrays is of particular interest to handle the multidimensional time series we are interested in. MATLAB has 
two main data types for time series handling (https://au.mathworks.com/help/matlab/time-series.html), 
timeseries and tscollection, with functionality that appear to be conceptually similar to those in xts. Both xts 
and numpy actually have core data handling written in C/C++, and were considered for reuse in early stages 
of work on uchronia. However, their features are either not generic enough or remain, to a significant extent, 
tied to their primary higher-level language, thus limiting interoperability and the uniformity of a user 
experience across several technical computing languages. 

Traditionally, strong contenders for handling multidimensional data including time series for earth sciences 
are netCDF and HDF5. These primarily deal with file storage mechanisms. Abstractions are offered in some 
of the associated software packages such as the netCDF Java API (https://www.unidata.ucar.edu/netcdf-
java), but remain to some extent bound to the storage layer. The lower level subsystems of Uchronia are in 
the majority using netCDF, and some architectural commonalities can be found elsewhere in uchronia, 
however direct bindings to netCDF have to remain confined to the lower software layers. 

Curiously, in the realm of native C++ libraries, we could not find a main contender for general-purpose 
multidimensional time series handling. For instance, although the Boost software library (http://boost.org) 
has a large scope, it appears not to comprise of a fully-fledged subsystem dedicated to time series. The Boost 
MultiArray library is relevant to the representation of multidimensional time series, and might be considered 
in the future as one data storage option for uchronia. 

425



Perraud et al., Design patterns and infrastructure in a software library with efficient handling of 
multidimensional time series 

3. SAMPLE USAGE 

One of the primary use cases for uchronia is handling data input to, and resulting output data from, 
retrospective ensemble streamflow forecasts. This section illustrates usage focusing on direct data handling 
without a modelling engine but it is important to note that uchronia is also designed to offer first-class time 
series handling in modelling engines. One such case is the SWIFT2 modelling toolset in (Perraud et al. 
2015). The present sample will use code snippets in R, but since uchronia is written in C++ with a C API, the 
same user experience is already available or possible from a variety of other interactive languages, such as 
Python and MATLAB. 

Figure 1 is a small but realistic example showing how to load a data set of ensembles of streamflow forecasts. 
Uchronia promotes the use of data libraries and data identifiers, hiding the details of the storage mechanism. 
Currently time series libraries are described using a high-level description in YAML1. This is but one 
possibility; a pragmatic choice as a first step to start abstracting pre-existing file systems arrangement. Later 
in this paper we will mention further options. 

 

 

 

Figure 2. Visualising the ensemble of forecasts 

                                                           
1 http://yaml.org/ 

library(uchronia) 
my_lib_file <- '//server/path/to/ovens_library.yaml' 
data_dir <- '//server/path/to/storage_root' 
data_lib <- getEnsembleDataSet(my_lib_file, dataPath=data_dir) 
getDataIdentifiers(data_lib) 
# [1] "ovens_streamflow_forecasts_ens_13" "ovens_streamflow_forecasts_ens_15" 
tsEnsTs <- getDataSet(data_lib, 'ovens_streamflow_forecasts_ens_15') 
str(tsEnsTs) 
# Formal class 'ExternalObjRef' [package "cinterop"] with 2 slots 
#   ..@ obj :<externalptr>  
#   ..@ type: chr "ENSEMBLE_FORECAST_TIME_SERIES_PTR" 
print(geometryOf(tsEnsTs)) 
# $temporal 
# $temporal$start 
# [1] "2010-08-01 21:00:00 UTC" 
# $temporal$time_step 
# [1] "86400s (~1 days)" 
# etc. 
fcast_times <- timeIndex(tsEnsTs) 
fcast_ind <- 200 
fcast <- getItem(tsEnsTs, i=fcast_ind, convertToXts = TRUE) 
plotXtsQuantiles(fcast[1:144,], title=paste("Streamflow forecast issue time ", 
fcast_times[fcast_ind]), xlabel='Lead time', ylabel='m3/s') 

Figure 1. Loading an ensemble of forecasts 

426



Perraud et al., Design patterns and infrastructure in a software library with efficient handling of 
multidimensional time series 

Data from time series libraries are retrieved using string identifiers. Figure 1 illustrates how libraries can be 
queried to determine which identifiers are present in them. Hierarchical identification schemes are supported 
though not illustrated in this example. In this code sample we load a time series of retrospective ensemble 
forecasts, i.e. structurally a time series of ensembles of time series. The memory footprint of the data loaded 
is actually in the vicinity of two gigabytes, spread across files totaling ~30 gigabytes, stored offsite and 
accessed over a networked file system. All this is hidden from the user and the initial loading response time is 
immediate, for what is loaded is a lightweight proxy with lazy loading capability. This proxy, a C++ object, 
is referenced from the R language and memory is properly reclaimed upon disposal of variables in R. 

Users can query the time series for its dimensionality, time spans, and time indices, and once again this is 
something that can be done without retrieving the bulk of the data. Data is fetched only when one of the 
items in the time series is needed for actual analysis or display. 

4. SYSTEM DESIGN OVERVIEW 

4.1. Architecture 

Uchronia is primarily aiming to provide a robust, interoperable and efficient set of time series handling 
constructs for reuse in third party model simulation systems. It is written in modern C++ as this is a language 
that combines efficiency and modernity, still evolving, and there is a choice of high quality commercial and 
non-commercial integrated development environments. Figure 3 highlights the high-level components of 
uchronia but also, more importantly, emphasizes the boundaries of this library. Well known third party 
libraries such as netCDF and Boost are reused, and while some of their concepts are pervading (such as 

Boost POSIX date and time) they are usually 
not surfaced further up in the software stack. 
Uchronia does not, and will not, provide 
advanced data identity and provenance tracking 
in isolation; the design philosophy is to provide 
API entry points to use third party systems to 
provide plug-ins with such capabilities. 

The core features of a time series in uchronia 
borrows some patterns from TIME (Rahman et 
al. 2003), mostly in terms of time step handling 
and the “strategy” pattern for customizable data 
storage. Beyond these broad-brush similarities, 
there are differences and improvements, most 
notably with respect to multidimensional data. 

4.2. Core time series structures 

A salient feature of uchronia is its use of C++ 
template programming, albeit with some 
temperance. From its inception, the goal was to 

aim for a unique codebase for time series, ideally suitable for “time series of anything”. The conceptual 
approach has been validated so far by use cases in ensemble streamflow forecasting, where the time series 
constructs went up to four dimensions with a “collection of time series of ensemble of time series”, also 
known as “collections of ensemble retrospective forecast time series” in a more domain-specific streamflow 
forecasting parlance. Figure 4 shows the actual specialisation of template time series and collections 
(MultiTimeSeries) to these dimensions, with literally no additional code beyond the initial generic templates. 

 

 

template <typename ItemType> 
using PointerTypeTimeSeries = TTimeSeries < ItemType* >; 
template <typename Tts = TimeSeries> 
using MultiTimeSeriesPtr = MultiTimeSeries < Tts* >; 
template <typename Tts = TimeSeries> 
using ForecastTimeSeries = PointerTypeTimeSeries < Tts >; 
template <typename Tts = TimeSeries> 
using TimeSeriesEnsemble = MultiTimeSeriesPtr < Tts >; 
template <typename Tts = TimeSeries> 
using EnsembleForecastTimeSeries = PointerTypeTimeSeries < MultiTimeSeriesPtr<Tts> >; 

 

Figure 3. High-level architecture 

Time series library

Data stores abstractions

Data store adapters

Multidimensional time series

C++ A.P.I. C A.P.I.

R package Python package

Simulation 
software

netCDF, txt, etc.

Provenance and data
identity management systems

Boost, cinterop, moirai

Generic time series 
transformations

Figure 4. Multidimensional template time series specialisations 

427



Perraud et al., Design patterns and infrastructure in a software library with efficient handling of 
multidimensional time series 

demo_streamflow_forecasts_ens: 
  Type: ts_ensemble_ts 
  Id: ovens_streamflow_forecasts_ens 
  TimeStep: 24:00:00 
  Start: 2010-08-01T21:00:00 
  Length: 2153 
  EnsembleSize: 1000 
  EnsembleLength: 218 
  EnsembleTimeStep: 01:00:00 
  Storage: 
    Type: multiple_nc_files_filename_date_pattern 
    File: ./ovens/data_v2_{0}2100.nc 
    Var: q_fcast_ens 
    Identifier: 15 
    Index: 0 

Figure 6. custom data source provider 

The temporal axis of time series uses, by default, a concept of time step rather than a series of indexing date 
and times. Regular time steps support operators such as multiplication, division and equality testing to 
facilitate operations such as aggregation and disaggregation. Date and times are handled using Boost 
templates. Use cases to date have focused on UTC. Provisions for a more explicit handling of time zones is 
present where no ambiguity is arising, but it is worth noting that target applications have largely not 
necessitated this and we have deliberately pushed back developing this to a later date when clear use cases 
arise, as the topic is in our experience fraught with complications and issues. 

While using C++ templates can be impressive to demonstrate as they stand, a naïve implementation quickly 
runs into memory limitation even on facilities generously endowed with RAM, with use cases already 
identified where the data footprint is in the terabytes territory. Time series can thus be constructed with a 
customisable storage policy, and missing value handling (Figure 5). A natural default for storage is in random 
access memory using standard C++ vectors. Storage policies with lazy loading or a windowing system have 
already been implemented for cases where the data is in one or several netCDF files. These cached data 
access patterns are commonplace in principles, though the implementation is far from trivial. It is worth 
noting that the design is not to have a general-purpose data caching system, but a customizable provision for 
targeting efficient caching mechanism tailored to the needs of the particular context and its data access 
patterns. 

 

Figure 5. Composite storage and missing value policies for time series 

4.3. Time series library and data providers 

While progress has been made over the past 
decade to improve data handling and curation 
for computational research, effort remains to 
improve the separation of the business logic 
from the disk storage persistence, often 
compromised by mixing direct file system-
based data file handling and simulation code. 
Uchronia features a concept of a time series 
library from which time series should be 
retrieved via string key identifiers. Time series 
libraries comprise a collection of objects 
describing time series data sources, 
customizable via object inheritance. One facet 
of these time series sources is shown in a 
YAML descriptor in Figure 6 which shows a 

three-dimensional retrospective ensemble forecast time series where data is spread across multiple files. 
Using YAML as a description is a compromise: it is structured for machines yet human-readable.  

4.4. Application programming interfaces and interoperability 

Uchronia can be accessed via two APIs: C++ or C (Figure 3). The C API may first appear as an unnecessary 
duplicate but has distinct advantages. C is a de facto lingua franca of native compiled code interoperability, 
whereas programming via the C++ API may tie you on to a particular C++ compiler. This is useful for 
surfacing in language bindings such as Python and R, and promotes a more consistent user experience. 
Embedding uchronia tightly as a central time series handling module for a simulation system is, on the other 
hand, better done via C++.  

5. DISCUSSION 

5.1. Retrospective lessons learnt 

The inception of uchronia has been driven by the specific needs of research in ensemble forecasting, but also 
with the benefit of hindsight in using and implementing other time series handling software subsystems such 

StoragePolicy

MemoryCachingStorageWriter

TimeSeries

MissingValuePolicy EagerWriter MultiFileTsStorage

428



Perraud et al., Design patterns and infrastructure in a software library with efficient handling of 
multidimensional time series 

as TIME (Rahman et al. 2003). Some classes in uchronia thus bear some similarities with TIME, notably in 
terms of time step handling and the “strategy” pattern for customizable data storage, wherever the existing 
approach was suitable. However most classes in uchronia were written from the ground up using template 
programming or metaprogramming, something that, initially, was technically not feasible for TIME. 
Template programming is one key technique permitting versatility for uchronia, where judicious. We mostly 
limit type parameters to one in classes, often the element type in a series or ensemble. While the C++ 
literature offered examples where policy/strategy patterns (in our case missing values and backend storage) 
were implemented template type parameters rather than polymorphic arguments, this proved overcomplicated 
or even counter-productive to do so in uchronia. 

5.2. Opportunities for data systems integration 

The architectural description in Figure 3 made clear that uchronia is covering a specific part of data provision 
and needs to be coupled to other data management systems to provide solutions such as the system described 
in (Yu et al. 2015b). netCDF is a natural candidate for persistent storage of multidimensional data, and 
already the majority of the storage layer under uchronia. netCDF files read/written by uchronia already 
follow conventions devised for ensemble forecasts, with a set of metadata attributes. These could be 
complemented with Linked Data semantic information such as devised in (Yu et. al. 2015a), or a new set of 
features in uchronia located higher in the software stack, and thus not limited to netCDF. 

Data identity is key to the sustainability of a provenance and uchronia, by design, already promotes the use of 
identifiers of varying granularity for data items. The mechanisms already in place in uchronia time series 
libraries are a pragmatic first step away from ad hoc, historical reliance on file systems paths as data 
identifiers. We intend in the future to explore and apply designs such as that in (Golodoniuc et al 2017) to 
couple uchronia data provision with robust and persistent data identification mechanisms. A related topic of 
interest is enhancing the provenance tracking capabilities (see Car et al. 2014 for instance). The application 
of such provenance methodology has a scope that intersects with but is beyond that of uchronia. 

6. CONCLUSION 

Uchronia is a library written in modern C++ that arose from the needs of an ensemble streamflow forecasting 
software, and is technically reusable in other domains dealing with multidimensional time series. Uchronia 
can play a role at the interface between infrastructure storing and serving data and time stepping simulation 
software, and we identify opportunities for data systems integration to foster reproducible research. Our 
intention is to have uchronia accessible by a broader community once licensing and governance arrangements 
are agreed open by project owners; in the meantime we invite the interested reader to contact the lead author 
of this paper. 

ACKNOWLEDGMENTS 

This work is carried out in the CSIRO Water for Healthy Country National Research Flagship and is 
supported by the Water Information Research and Development Alliance between CSIRO and the Australian 
Bureau of Meteorology. 

REFERENCES 

Bennett, J. C., Robertson, D. E., Shrestha, D. L., Wang, Q. J., Enever, D., Hapuarachchi, P., and Tuteja, N. 
K. (2014). A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days, 
Journal of Hydrology, 519, 2832-2846. DOI:10.1016/j.jhydrol.2014.08.010 

Car, N.J.; Stenson, M.P. and Hartcher, M. (2014). A Provenance Methodology And Architecture For 
Scientific Projects Containing Automated And Manual Processes, 11th International conference on 
hydroinformatics, http://academicworks.cuny.edu/cc_conf_hic/57 

Golodoniuc, P., Car, N.J. and Klump, J. (2017). Distributed persistent identifiers system design, Data Science 
Journal, (vol. 16), Ubiquity Press. DOI:10.5334/dsj-2017-034 

Perraud, J.-M., Bridgart, R.J., Bennett, J.C. and Robertson, D.E. (2015). SWIFT2: High performance 
software for short-medium term ensemble streamflow forecasting research and operations, 21st 
International Congress on Modelling and Simulation, Gold Coast, Australia, p. 2458-2464. 
http://mssanz.org.au/modsim2015/L15/perraud.pdf  

429



Perraud et al., Design patterns and infrastructure in a software library with efficient handling of 
multidimensional time series 

Rahman, J.M., Seaton, S.P., Perraud, J.-M., Hotham, H., Verrelli, D.I., Coleman, J.R. (2003). It's TIME for a 
new environmental modelling framework. In: Post, D. A., (Ed.), MODSIM 2003 International Congress 
on Modelling and Simulation, p. 1727-1732. 
http://www.mssanz.org.au/MODSIM03/Volume_04/C05/03_Rahman.pdf  

Yu, J., Car, N.J., Leadbetter, A., Simons, B.A., and Cox, S.J.D. (2015a). Towards Linked Data Conventions 
for Delivery of Environmental Data Using netCDF, ISESS 2015: Environmental Software Systems. 
Infrastructures, Services and Applications pp 102-112. DOI:10.1007/978-3-319-15994-2_9  

Yu, J., Hodge, J., Leighton, B, Seaton S., Vleeshouwer, J., Tickell, S. and Car, N.J. (2015b). Flexible and 
modular visualisation and data discovery tools for environmental information, 21st International Congress 
on Modelling and Simulation, Gold Coast, Australia, p. 1317-1323 
http://mssanz.org.au/modsim2015/F8/yu.pdf  

 

 

430




