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Abstract:   Predicting druggability and prioritising certain disease modifying targets is critical in drug 
discovery. Expanding the spectrum of disease-relevant targets to pharmacological manipulation is vital to 
reducing morbidity and mortality. We test a druggability rule, based on 10 molecular parameters (scores 
counting violations, denoted by score10), which uses cutpoints for each molecular parameter based on mixture 
clustering discriminant analysis (MC/DA) (Hudson et al., 2014).   A total of 1279 small molecules from the 
DrugBank chem-informatics database (Knox et al., 2011), combining detailed drug (i.e. chemical, pharma-
cological and pharmaceutical) data with drug disease target information, were analysed and these were shown 
to be aligned with 173 targets. The score10 function comprised 4 traditional parameters of the rule of five 
(Ro5) (Lipinski, 2016), plus 5 extra parameters (polar surface area PSA, number of rotatable bonds, rings and 
halogens, N and O atoms) with an extra candidate of lipophicility, log D (the distribution coefficient) recently 
suggested by Bhal et al., 2007 as a possible preferable predictor for permeation (Zafar, Hudson et al., 2016, 
2013;) to Lipinski’s traditional partition coefficient, Log P, a predictor for permeation.   

Multivariate skew normal (SN) (Lee and Mc Lachlan 2013) and Gaussian (MN) mixture clustering identified 
5 molecule groups based on the 10 predictors, or 9 predictors when the number of halogen atoms was omitted. 
MN clusters were highly differentiable with 3 of the 5 clusters classified as poor druggable candidates, 
similarly the SN clusters. Logistic regression was used to determine the best cutpoint, C, for the total number 
of  violations, score10 (< C versus greater or equal to C, for C= 3, 4 or 5) using  predictor models containing  
the molecule’s Ro5 status (if Ro5 compliant  the molecule is druggable  by Lipinski’s rule), oral status, and 
poor vs good druggability grouping based on the clustering. We studied the performance of a support vector 
machine (SVM) and Recursive partitioning (RP) based on the 10 molecular descriptors, to classify compounds 
with high or low violator scores (defined by our optimal cutpoint, C). RP was applied to find simple hierarchical 
rules to classify the high score violators from the low (< C). PRoC analyses (Robin et al., 2011) and logit 
analyses showed that a cutpoint of 5 is best in partitioning chemo-space. For either partition of the score10 
function, logistic models with the MN10 cluster predictor were superior to that of the (SN10). The best model 
was obtained for a cutpoint of 5 (AIC = 1403.79) and established that molecules with 5 or more violations 
tended to be non-oral candidates (p <0.00001), MN10 poor (p <0.00001) and be Ro5 violators (p <0.00001), 
with a significant oral by cluster interaction (P< 0.03) found. The SVM classifier of the score10 partition (C=5) 
gave a Matthews coefficient C= 0.887. PROC analyses gave high values for the area under the curve (AUC) 
of 98.7%, with 95% CI (98.2%-99.3%), sensitivity (r) and specificity (s), 0.961 and 0.924, respectively for the 
training set. For the validation set SVM gave an AUC of 98.1%, 95% CI (97%-99.2%), r=0.927, s=0.983 and 
likewise a high C=0.818. The RP classification gave similar but slightly lower AUC and C values as the SVM. 
Specifically, the RP classifier for the score10 partition yielded an AUC of 95.1% with 95%CI (93.8%-96.4%), 
sensitivity of 0.918, specificity 0.936, and C= 0.845 for the training set; for the  validation set  an AUC of 
95.3% with 95% CI (93.1%-97.5%), with r=0.924, s=0.886 and C=0.809. The RP rules to classify the high 
score violators from the low (< 5) confirmed the value of log D’s inclusion in the scoring function and 
supported the original MC/DA cutpoints established for each molecular descriptor (Hudson et al., 2014). Our 
work illustrated that SVM used in combination with simple molecular descriptors can provide a reliable 
assessment of our simple scoring function of counts of violations partition.  Moreover, molecules with score10 
representing 5 or more violations were shown to be associated with specific disease targets, namely, Anti-
Bacterial, Antineoplastic, Antihypertensive and Anti-allergic, within which most of the drugs have a non-oral 
delivery mode. Target drugs with a median score10 < 5 were Adrenergic, Dietary, Analgesics, Anti-infective, 
Anesthetics, Adjuvants, Anti-convulsants, Antimetabolites and Antidepressants, all of which, except Dietary 
and Anesthetics, were non-oral.  
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1.  INTRODUCTION    

High throughput docking of small molecule ligands (candidate drugs) into high resolution protein structures is 
now standard in computational approaches to drug discovery (Ursu et al., 2017, 2011). Further  details are in  
Hudson et al. (2016), who investigated Self Organising Map (SOM) artificial neural network procedures as a 
computational tool for the evaluation of docking experiments of calpain ligands (small drug molecules) for the 
treatment of cataracts. Predicting druggability and prioritising certain disease modifying targets for drug 
development is of high practical relevance in pharmaceutical research (Rask-Anderson et al., 2011, Lavecchia 
et al., 2015). Druggability predictions are important to avoid intractable targets and to focus drug discovery 
research on sites with preferable prospects and mortality (Lazo & Sharlow, 2016). Recently many targets have 
been classified as “undruggable” due to their lack of oral bioavailability. Generally, such targets have binding 
sites which are large, highly lipophilic, flexible, highly polar and featureless. This has in part created a 
momentum in small molecule drug discovery to move outside the Ro5 space, to the so-called beyond Ro5 
(bRo5) space, noting that  the Ro5 delineated cutpoints for Lipinski’s traditional parameters (multiples of 5) 
by which if 1 violation occurred among the 4 parameters (highlighted in Table 2) the molecule was assumed 
Ro5 non-compliant.  Recent drug studies suggest that cell permeable and orally bioavailable drugs have been 
discovered far into bRo5 space (Mattson et al., 2016), which affords significantly more possibilities for orally 
bioavailable and cell permeable compounds (Doak et al., 2016). Too strict an implementation of the Ro5 may 
well have hampered the pharmaceutical industry in regard to finding novel and more difficult drugs as well as 
more conventional drug targets as the cutpoints of the first 3 of Lipinski  parameters rules were rather lower 
(Table 2). In this paper we tested a druggability rule based on 10 molecular parameters (scores counting 
violations, denoted score10) which uses cutpoints for each parameter based on mixture clustering discriminant 
analysis (MC/DA) (Hudson et al., 2014).  The score10 function comprised the 4 traditional parameters of rule 
of five (Ro5) highlighted in Table 2, plus 5 extra parameters (PSA, number of rotatable bonds, rings, halogens, 
N and O atoms) with an extra candidate of permeability, log D (the distribution coefficient), suggested recently 
(Bhal et al., 2007) as a preferable predictor  to Lipinski’s partition coefficient, Log P. 
  
2.  DATA AND METHODS         

2.1     Data and Druggability Scoring Rules   

We analysed 1279 small molecules from the DrugBank database (Knox et al. 2011), a unique bioinformatics 
and chem-informatics resource combining detailed drug (i.e. chemical, pharmacological and pharmaceutical) 
data with drug target (i.e. sequence, structure, pathway) information on 6,711 drug entries, and  1441 FDA-
approved small molecule drugs (one candidate molecule example is shown in Table 1). Of the 1279 candidates 
there are 105 Ro5 violators, 681 and 598 with oral and non-oral delivery modes, respectively.   
 
Table 1. DrugBank3.0 information on one candidate molecule (DB01048 Abacavir).  

DrugBank ID & Name 
CAS Number  

Molecular  
Weight  
Formula  

Chemical Structure  Categories  Therapeutic Indication  

DB01048 Abacavir   
  

136470-78-5  

286.3323  
  

C14H18N6O  

 

Anti-HIV Agents /  
Nucleoside and Nucleotide  

Reverse Transcriptase  
Inhibitors / Reverse  

Transcriptase Inhibitors  

For the treatment of HIV-1 
infection, in combination with 

other antiretroviral agents.  

  

Recently, Hudson et al. (2014) developed druggability rules (scores counting violations) which use a new 
cutpoint for each molecular parameter based on a mixture clustering (mclust) (Fraley et al., 2012) discriminant 
analysis (MC/DA) approach. Table 2 shows that the cut-off values of the Ro5 (Lipinski, 2016), of Veber et al. 
(2002) and of Hudson et al. (2014) are not in agreement, particularly for MW, PSA and log P. However, Hudson 
et al.’s cutpoints are much in agreement with recent cutpoints of Ursu et al. (2017), in particular for MW, log 
P and PSA (refer to columns 4-6 of Table 2). Note the cutpoint for Log D of 3.5 (Hudson et al., 2014) is smaller 
than 5.5 suggested earlier by Bhal et al. (2007). Work by Zafar et al, (2013, 2016) also found the pH dependent 
version of permeability, log D at intestinal pH (log D ~ 3.5), superior to the classic parameter log P.  
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Table 2. Cutpoints for violation of physicochemical parameters: orally formulated drug subset of Drugbank   
Property  Lipinski  

Ro5  
Veber 
et al., 
2002  

Hudson   
et al., 
2014  

Ursu et 
al., 2017  
Median   

Ursu et al.,  
2017  
3rd Quartile  

Bhal et 
al., 2007  

Molecular  weight (MW) (Daltons, Da)  ≤ 500  ≤ 700  ≤ 305  ≤ 324.8  ≤ 411.5    
Log P  ≤ 5  ≤ 9  ≤ 1.9  ≤ 2.43  ≤ 4.05    
Hydrogen Bond (HB) donors (HBd)  ≤ 5    ≤ 4  ≤ 1  ≤ 2    
HB acceptors (HBa)  ≤ 10    ≤ 7  ≤ 5  ≤ 7    
HBd+ HBa    ≤ 12  ≤ 11  ≤ 6  ≤ 9    
Polar surface area (PSA) (Å2 angstroms)    ≤ 140  ≤ 65  ≤ 67.2  ≤ 98.8    
Number ROT BONDS    ≤ 10  ≤ 7  ≤ 4  ≤ 7    
Number of N, O atoms      ≤ 40        
Ring number      ≤ 2        
Halogens      ≤ 2        
Log D      ≤ 3.5      ≤ 5.5  

  
 2.3    Statistical Methods  

Multivariate skew normal (SN) (Lee and  Mc Lachlan 2014) and Gaussian (MN) mixture clustering were used 
to identify molecule groups based on the 10 predictors and to differentiate so-called good  versus poor 
druggable candidates as in Hudson et al., (2014).  Logistic regression was performed to determine the best 
cutpoint, C, for the total number of violations, score10 (< C versus greater or equal to C, for C = 3, 4 or 5). 
These thresholds for C were suggested by preliminary trends in clustering of Hudson et al., (2014). The logit 
predictor models analysed here contain the molecule’s Ro5 status (if Ro5 compliant, then druggable by 
Lipinski’s rule), oral status, and poor vs good druggability based on the MN or SN clustering. Support vector 
machine (SVM) and Recursive partitioning (RP) based on the above 10 molecular descriptors was then used 
to classify compounds according to the partition - high or low Score10 values as defined by the optimal 
cutpoint. The data set was divided into a 959-molecule training set and a 320-molecule test set. RP was used 
to find simple hierarchical rules to classify the high score10 violators from the low (< C).   

3.  RESULTS   

3.1.  Logit analysis     

Multivariate skew normal (SN) (Lee & Mc Lachlan 2014) and Gaussian (MN) mixture clustering identified 5 
molecular groups based on the 10 predictors, or 7 clusters when based on 9 predictors, when the number of 
halogen atoms (h) was omitted (MN10-h, SN10-h models). The MN10 groups were highly differentiable with 
3 of the 5 obtained clusters classified as poor druggable candidates (in total these 3 clusters contain 350 
molecules). For either partition of the score10 function, with and without the number of halogen atoms included 
as a predictor of the clusters, logit models containing the MN10 cluster predictor were superior to the skew 
normal SN10 based models. The best MN10 model showed that molecules with 5 or more violations (AIC = 
1403.79) tended to be non-oral candidates (p < 0.00001), MN10 poor (p < 0.00001) and be Ro5 violators (p < 
0.00001) (Table 3). This optimal MN10 model gave a significant oral by cluster interaction (p < 0.02), in that 
for Ro5 compliant molecules, the predicted probability of scoring high (≥5) for the MN10 good molecules was 
0.328 and 0.477, for oral and non-oral molecules, respectively. The probability of scoring ≥ 5 for the MN10 
poor cluster was 0.750 and 0.757 for oral and non-oral Ro5 compliant molecules. For the Ro5 violators the 
predicted probability of scoring high (≥5) was 0.999 for both the poor and good MN10 classes, irrespective of 
their oral status. For the MN10 model, in terms of odds, the odds of a  ligand scoring ≥ 5 increased by 0.527 
for a ligand classified as non-oral and in the MN10 good cluster (with Ro5 status fixed). The odds of a molecule 
being a high scorer ≥5 increased by 3.014 if the molecule is classed as MN10 poor and oral (with Ro5 status 
fixed). The odds of a molecule being in the high score10 group increased by 3.13 if it is non oral and in the 
poor MN10 cluster (with Ro5 status fixed). The odds of a molecule being a high score violator increases by 
94.54 if it is Ro5 noncompliant (with oral status and MN10 clustering fixed). Note the SN10 based logit models 
(where 433 molecules were classified as poor, based on k=7 SN10 clusters) did not demonstrate a significant 
oral by cluster interaction (not reported here). PRoC analyses (Robin et al., 2011) confirmed that a cutpoint of 
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5 for score10 is better than a cut-off of 4 to partition chemo-space (not reported here due to space restrictions), 
this optimal C of 5, was true for both the MN10 and SN10 based models, in agreement with the logit analysis.  

 
Table 3. MN10 and SN10 based logistic models for Score10. NS denotes “not significant”.  

  C  MN10 included as a predictor  SN10 included as a predictor  

      β  
coefficient   

S.E  p-value  β  
coefficient  

S.E  p-value  

Score10  < 5  Non-oral  
Ro5-  

Poor cluster  
Oral*Cluster   

-0.640  
4.549 
1.103  
0.680  

0.1617  
1.0111 
0.1891  
0.2849  

< 0.00001  
< 0.000001  
< 0.0000001  

< 0.02  

-0.418  
4.589  
1.248  

-  

0.1288  
1.0131  
0.1756  

-  

< 0.002  
< 0.000001  
< 0.00000001 

NS  

   
3.2.  Disease target results    

In this study, 173 targets for 1279 small molecules were retrieved from the  data and the median score10 value 
obtained for the molecules in a  given target group, where drug targets were associated with at least one FDA 
approved small drug. For example, if several molecules (say 40) are associated with one target, then the median 
values of score10 and of each of the 10 molecular descriptors that are used to evaluate score10 for 40 drugs 
were evaluated for that particular target. Of the 173 targets studied, 99 targets were predominantly oral and 74 
non-oral in terms of modes of delivery. In this paper we report the top 12 targets which contain 25 or more 
molecules. Table 4 gives the disease target name for the top 12 targets, their associated number of molecules, 
median score10 value, overall oral status, along with the number of oral molecular candidates in the given 
target. For the twelve most representative targets to which 579 small molecules belong, Figure 1 shows the 
median values of 4 molecular descriptors, namely, molecular weight (MW) and log P of Lipinski (2016), Polar 
Surface Area (PSA) of Veber et al (2002); and log D of Bhal et al., (2007), latter used to compare with  classical 
log P candidate for permeability. The targets with a median score10 of 5 or more (C= 5), were Anti-Bacterial, 
Antineoplastic, Antihypertensive and Anti-allergic, within which most of the drugs have a non-oral delivery 
mode (Table 4). Figure 1 displays the medians of Log P, MW, PSA and Log D across the top 12 disease targets.  
 
Table 4. Description of the top 12 targets in terms of Score10 and oral status.  

Target  Total no.  
(n) of 

molecules  

Median 
Score10  

Score10 
status  

Number of  
oral molecules  

Oral 
status  

  

Adjuvant  25  2  Low score  14  Oral  
Anti-anxiety  26  4  Low score  20  Oral  
Antihypertensive  35  5  Violator  17  Non-oral  
Dietary   40  1  Low score  11  Non-oral  
Antineoplastic  57  5  Violator  28  Non-oral  
Anti-inflammatory   61  4  Low score  40  Non-oral  
Anti-Infective  40  1.5  Low score  23  Oral  
Anti-Bacterial  92  6  Violator  42  Non-oral  
Anesthetics  30  2  Low score  6  Non-oral  
Analgesic  48  3  Low score  30  Oral  
Adrenergic   98  3  Low score  62  Oral  
Anti-Allergic  27  5  Violator  12  Non-oral  

 
Table 5. Description of the target specific median of molecular parameters, score 10 and oral status for 6 targets  

 Targets  (score10)  MW  Log P  logD  HBa  HBd  PSA  Rot  
Natoms/ 
Nrings  

Oral 
status  

(n)  

Anti-bacterial      (6)  453.66  0.20  -1.49  10  3.5  180.82  5  51 (4)  Non-  92  
Adrenergic          (3)  278.9  2.08  1.8  4  2  66.02  4  42 (2)  Oral  98  
Analgesic            (3)  285.33  2.3  2.41  3  1  49.55  3.5  43 (3)  Oral  48  
Antidepressants  (3)  298.36  2.95  2.66  4  1  38.88  4  40 (2)  Oral  16  
Antimetabolites  (3)  244.2  -1.0  -0.75  7  3  111.18  2  29 (2)  Oral  21  
Anticonvulsants  (1)  218.25  0.9  1.11  3  1  63.4  2  29 (2)  Oral  24  
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Figure1. Pattern of Log P, MW, PSA and Log D across the top twelve targets. 

 The pattern of molecular profiles of these 12 targets is shown in Figure 1. For example, the Anti-Bacterial 
target drugs (with a median score10 of 6) were large in size (median MW = 453.66 daltons) compared to other 
targets and particularly compared to the Dietary target (median MW = 166.16 daltons). The median values of 
3 descriptors representing hydrogen bond donors and acceptors (HBd, HBa)) or electrostatic features, HBa, 
HBd and PSA, were also high for the Anti-Bacterial target (10, 3.5 and 180.82, respectively) (Table 4-5). In 
addition, the median values for the Antihypertensive (non-oral) target drugs were high for HBa (6) and PSA 
(110.4) as was the median score10 of 5 (Fig. 1). The Dietary target had the lowest median score10, median 
MW and negative medians for both log P = -2.45 and log D = -2.81 (Table 5). Notably most drugs of these 3 
targets (Anti-bacterial, Dietary, Antihypertensive) were non-oral but Ro5 compliant.  

The Antimetabolites target had a low median score10 of 1, low median MW = 244.2, but high PSA = 111.18, 
and negative median values for log P = -1.0 and log D = -0.75. Negative median values indicate higher 
hydrophobicity for both the Dietary and Antimetabolites target drugs.  Noteworthy, the median values of log P 
= 3.4 and log D = 3.58 for the Anti-allergic target drugs (non-oral, with a median score10 of 5) were higher 
than the other 11 target groups (Figure 1) evidencing that the anti-allergic drugs may prefer not to transport 
hydrophobic molecules; followed then by the Antihypertensive and Anti-inflammatory targets (non-oral) with 
respective median score10 of 5 and 4. Interestingly, median Log D for Antibacterial target drugs was negative 
-1.49 versus 0.20 for log P, indicating that log D and log P contain different information as suggested by Bhal 
et al., (2007).   

3.3.  SVM and RP results  

The SVM classifier for our score10 partition (with cutpoint 5) yielded a Matthews coefficient C= 0.887. ROC 
analyses gave high values for the area under the curve (AUC) of 98.7%, with 95% CI (98.2%-99.3%), 
sensitivity (r) and specificity (s), 0.961 and 0.924, respectively for the training set. For the validation set SVM 
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gave an AUC of 98.1%, 95% CI (97%-99.2%), r=0.927, s=0.983 and likewise a high C=0.818. The RP 
classification gave similar but slightly lower AUC and C values than the SVM. Specifically, the RP classifier 
for the score10 partition yielded an AUC of 95.1% with 95%CI (93.8%-96.4%), sensitivity of 0.918, specificity 
0.936, and C= 0.845 for the training set; for the validation set  an AUC of 95.3% and 95% CI (93.1%-97.5%), 
with r=0.924, s=0.886 and C=0.809 was obtained.  The multivariate RP rules obtained to classify the high score 
violators from the low (< 5) confirms the univariate MC/DA cutpoints of Hudson (compare Figure 2 with Table 
2).  The numbers and labels inside the rounded  rectangles delineate the number at  each recursive partitioning  
step that satisfy or not  the node cutpoint , the ligands are then split into the good and poor partitions based on 
score 10 at the next recursive step.  For example in the validation set of 320 ligands with the partition good C 
< 5, vs poor C > 5)  197 satisfy MW < 342 and are classed good (RHS Fig. 2), and 123 plased in the  poor 
partition, for which MW exceeds 342.  Of the 197 good ligands, 183 satisfy  MW < 306 - at the next step, these 
are  classed as  good,  of the 27 remaining molecules (183-156= 27) molecules  (those with log D < 4.3 are in 
good score10 partition, 13 with log D  > 4.3 are classed as poor.  Note 156+27 = 183 and 1 + 13 = 14. The RP 
classification tree also supports the value of using log D < 3.5 (< 4.3) (left hand arms of Fig. 2 for the good 
ligands) and note that Log D < 0.066 (in the training set, right hand arm, poor ligands, Figure 2) captures 
negative Log D, in the Anti-bacterial and Dietary target values for Log D or Log P (Figure 1).  

   
Figure 2. RP Classification Tree for partitions based on Score 10 with cutpoint 5.    

4.  DISCUSSION AND CONCLUSIONS   

Our work illustrates that a simple scoring function of counts of violations can partition chemospace and help 
identify both good and poor druggable molecules, and associated targets.  Moreover, ligands with 5 or more 
violations, based on adding subcomponents of score10, were shown to be associated with specific disease 
targets. The Anti-Bacterial target drugs (median score10 = 6) were found to have high values for all 10 
molecular parameters, consistent with the results of Giordanetto et al., (2014), who reported that compounds 
that fall into the  bRo5 space (higher MW and PSA) include the Anti-bacterial target. In contrast Dietary target 
drugs had low values for the 10 descriptors, lowest median score10 of 1, lowest median MW and also negative 
medians for both log P = -2.45 and log D = -2.81. Further work that aims to evaluate which of the Log D and 
Log P best reflects permeability will test different score functions, based on 9 parameters, which respectively 
omit Log P (score9D) and log D (score9P), and  find  associated best score cutpoints  (Hudson et al., in prep). 
Recently log P’s association with MW and PSA was shown to change magnitude/sign according to the 
molecule’s Lipinski’s Ro5, not so for log D (Zafar et al., 2016; 2013). Consequently future work will test for 
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Log P and Log D’s association with the remaining ligand parameters, according to the new strata based on our 
score10 partition (< 5 vs ≥ 5) in this paper and in regard to new partitions based on 9 parameters. Ongoing 
work using mixture clustering of the target-specific medians of the 10 molecular parameters aims to help 
identify so-called poor and good targets. How these targets correlate with new partitions based on 9 molecular 
parameters is a future research topic (Hudson, Shafi et al., in prep).  
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