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Abstract: A human genome is highly structured. Usually, the structure forms regions having patterns of a 
specific property. It is well-known that analysis of biological sequences is often confronted with measurements 
for the gene expression levels. When these observations are ordered by their location on the genome, the 
values form clouds with different observed means, supposedly reflecting different mean levels. The statistical 
analysis of these sequences aims at finding chromosomal regions with “abnormal” ( increased or decreased) 
mean levels. Therefore, identifying genomic regions associated with systematic aberrations provides insights 
into the initiation and progression of a disease, and improves the diagnosis, prognosis and therapy strategies.

In this paper, we present a further extension of our work, where we propose a two-staged hybrid algorithm to 
identify structural patterns in genomic sequences. At the first stage of the algorithm, an efficient sequential 
change-point detection procedure (for example, the Shiryaev-Roberts procedure or the cumulative sum control 
chart (CUSUM) procedure) is applied. Then the obtained locations of the change-points are used to initialize 
the Cross-Entropy (CE) algorithm, which is an evolutionary stochastic optimization method that estimates 
both the number of change-points and their corresponding locations. The first-stage of the algorithm is very 
sensitive for the thresholds selection, and the identification of optimal thresholds will increase the accuracy of 
the results and further improve the efficiency of the a lgorithm. In this study, we propose an improved hybrid 
algorithm for change-point detection, which uses optimal thresholds for the sequential change-point detection 
procedure and the CE method to obtain more precised estimates. In order to illustrate the usefulness of the 
algorithm, we have performed a comparison of the proposed hybrid algorithms for both artificially generated 
data and real aCGH experimental data. Our results show that the proposed methodologies are effective in 
detecting multiple change-points in biological sequences.

Keywords:  Change-point detection, aCGH microarray data, CNVs, DNA copy number, combinatorial
               optimization, Cross-Entropy method

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

508



G. Y. Sofronov et al., An Improved Hybrid Algorithm for Multiple Change-Point Detection ...

1 INTRODUCTION

Recent biological studies show the close relationship between chromosomal copy number alterations and dis-
eases like cancer and diabetes (for example, see Almal and Padh (2012)). The technique of microarray com-
parative genomic hybridization (array CGH) enables one to perform genome-wide screening for all possible
regions with DNA copy number variations (CNV). In abnormal cells, mutations can cause a gene to be either
deleted from the chromosome or amplified, that is, there are extra DNA copies of the gene. The analysis
of aCGH data relates to one of the most important applications involving change point detection. Identify-
ing abrupt changes is also very important in other biological applications such as recombination of viruses
(Halpern, 2000), characterization of complete transcriptomes via high-density DNA tiling microarrays (Huber
et al., 2006) or investigation of DNA sequences in general (see, for example, Karlin and Brendel (1993)).

In recent years, a number of change-point detection methods have been developed. Many of the segmenta-
tion approaches are discussed in Braun and Muller (1998), Algama and Keith (2014) and Priyadarshana and
Sofronov (2015). These also include stochastic optimization methods (for example, genetic algorithm and
the Cross-Entropy method) Priyadarshana and Sofronov (2015); Evans et al. (2011); Polushina and Sofronov
(2011, 2013, 2014); Priyadarshana et al. (2013, 2015); Polushina and Sofronov (2016) and Markov chain
Monte Carlo (MCMC) algorithms Algama and Keith (2014); Keith (2006); Keith et al. (2008); Sofronov
(2011). Apart from applications in bioinformatics, segmentation methods can also be used in different fields
including economics (Priyadarshana and Sofronov, 2012), ecology (López et al., 2010), and quality control
(Sofronov et al., 2012).

All change-point problems can be divided in two large groups: retrospective (off-line) and sequential (online).
In the first case, all data have been observed already and the problem is to estimate the number and the locations
of the change-points. In the second (online) case, variables appear sequentially (one by one) and one does not
know the future observations. Since in the case of DNA segmentation, all observations are known, sequential
change-point detection methods can be used, for example, as an initial approximation for off-line methods
(Priyadarshana et al., 2013).

The paper is structured as follows. Section 2 provides a statement of the multiple change-point problem in
mathematical terms. Section 3 describes the proposed hybrid algorithm and a general Cross-Entropy method
for multiple change-point problem. In Section 4, we perform the numerical analysis to assess the significance
of the proposed procedure. Section 5 concludes the paper with a discussion.

2 THE MULTIPLE CHANGE-POINT PROBLEM

We model genome sequences as a multiple change-point process, that is, a process in which sequential
data are separated into segments by an unknown number of change-points, with each segment supposed
to have been generated by a different process. More formally, let us consider a sequence of observations
X = (x1, x2, . . . , xL) of length L, in which the xi’s are independently distributed random variables. A seg-
mentation of the sequence is specified by the number of change-points N and the corresponding locations of
the change-points C = (c1, c2, . . . , cN ), where 1 = c0 < c1 < · · · < cN < cN+1 = L + 1. In this context,
a change-point is defined as a boundary between two adjacent segments. The value of cn is the sequence
position of the rightmost character of the segment to the left of the n-th change-point. The segments are num-
bered from 0 to N as there will be one more segments than the number of change-points. The model assumes
that within each segment the observations are distributed as normal with the mean µn and the variance σ2

n,
n = 0, 1, . . . , N . Both the mean and the variance are not known in advance and the maximum likelihood
method is used to obtain their estimates. The log-likelihood of the model is

ll(X | N,C,µ,σ2) =
N∑

n=0

[
−λn

2
ln (2πσ2

n)−
1

2

cn+1−1∑
i=cn

(
xi − µn

σn

)2]
, (1)

where the length of the n-th segment is defined as λn = cn+1 − cn, C = (c1, c2, . . . , cN ), µ =
(µ0, µ1, . . . , µN ), and σ2 = (σ2

0 , σ
2
1 , . . . , σ

2
N ).

If we assume that there is no change in the variance, that is, for all segments σ2 stays the same, then the

509



G. Y. Sofronov et al., An Improved Hybrid Algorithm for Multiple Change-Point Detection ...

log-likelihood function is

ll(X | N,C,µ,σ2) =
N∑

n=0

[
−λn

2
ln (2πσ2)− 1

2

cn+1−1∑
i=cn

(
xi − µn

σ

)2]
. (2)

3 THE HYBRID CROSS-ENTROPY METHOD FOR THE MULTIPLE CHANGE-POINT PROBLEM

We can consider the multiple change-point detection problem as a combinatorial maximization problem of
the log-likelihood function defined in (1) or (2). In general, let S be a real-valued performance (or objective)
function on X , where X is a finite set and the aim is to find the positions of change-points that correspond
to the maximum value of S over X . In order to solve this problem, we use the Cross-Entropy (CE) method,
a stochastic optimization method that is used for the estimation of rare event probabilities (Rubinstein and
Kroese, 2004, 2007). This estimation problem can be reformulated as an optimization problem.

We propose to combine a sequential change-point detection algorithm with the CE method to detect multiple
change-points. So our hybrid algorithm consists of two stages.

Stage 1: We use the function processStream from the R package cpm Ross (2015). If we aim
to detect changes in the mean (see model (2)), we use cpmType=Student Hawkins et al. (2003).
To detect changes in mean and variance (see model (1)), we use cpmType=GLR Hawkins and Zamba
(2005). Traditionally, in sequential analysis we select parameters to trade off between false alarm rate
and average run length. However, in our case we will verify and update true change-points by the CE
algorithm. Therefore here by selecting parameters, we allow to obtain relatively high false alarm rate
with additional false positive change-points.

Stage 2: The obtained locations of the change-points in stage 1 are used as initial parame-
ters for the Cross-Entropy algorithm. We created new functions CE.Normal.Init.Mean and
CE.Normal.Init.MeanVar in the R package breakpoint (Priyadarshana and Sofronov, 2016)
to obtain change-point estimates with initial values.

The proposed hybrid algorithm and its steps are explained in algorithm 1.

Algorithm 1 Proposed hybrid algorithm.
1: Run a sequential change-point detection algorithm to obtain initial estimates for the number (N ) as well

as the locations (C) of change-points.
2: Based on the estimates ofN and C, initiate the CE algorithm to obtain more accurate locations of change-

points.
3: For all pairs of adjacent segments, perform a two sample Student’s t-test (for equal variances) or Welch’s

t-test (for unequal variances), in order to identify the most insignificant change-point with the largest p-
value. The p-values are adjusted using a multiple comparison correction (for example, the Bonferroni
correction Simes (1986)) to control the family wise error rate in multiple hypothesis testing.

4: Eliminate the most insignificant change-point from the solution and update the solution vector with the
other estimates.

5: Initiate the CE algorithm with the new set of change-point locations.
6: Repeat steps 3, 4 and 5 until all change-points found are significant. Return C: the vector of change-point

locations. The length of this vector is the resultant number of change-points.

LetN be the maximum number of change-points and c be a set of the change-points, which is a non-decreasing
N -dimensional vector. In the R package breakpoint, we can choose either normal or 4-parameter beta
distributions to simulate the change-point positions. The CE method updates the parameters in each step and
updating is continued until a stopping criterion is met. In each iteration an elite sample is defined as the best
performing combinations of change-points with respect to the performance function score. The process is
carried out until a specific stopping criterion is achieved. In each step, the simulation parameters are updated
accordingly. The main steps of the CE algorithm are described in algorithm 2 using normal distribution to
simulate change-point locations. Here we choose the simulation parameters under conditions that guarantee
convergence of the CE algorithm Costa et al. (2007).
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Algorithm 2 CE algorithm.

1: Choose initial sets for µ(0) =
(
µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
N

)
and (σ2)(0) =(

(σ2
1)

(0), (σ2
2)

(0), . . . , (σ2
N )(0)

)
. The length of both vectors is N . Set t = 1.

2: Generate a random sample c(1), c(2), . . . , c(N1) from the normal distributions with parameters(
µ(t−1), (σ2)(t−1)

)
, where c(i) =

(
c
(i)
1 , c

(i)
2 , . . . , c

(i)
N

)
, i = 1, 2, . . . , N1, is a change-point vector.

3: For each i = 1, 2, . . . , N1, order
(
c
(i)
1 , c

(i)
2 , . . . , c

(i)
N

)
from smallest to biggest.

4: Evaluate the performance of each c(1), c(2), . . . , c(N1). Define the elite sample, which is the best perform-
ing combinations of the change-points. Let Nelite = ρN1 be the size of the elite sample.

5: For all j = 1, 2, . . . , N , estimate the parameters µ(t)
j and (σ2

j )
(t) using the elite sample and update the

current parameter sets as follows:

µ
(t)
j =

∑
i∈I

c
(i)
j

Nelite
,

(
σ2
j

)(t)
=

∑
i∈I

(
c
(i)
j − µ

(t)
j

)2
Nelite

,

where I is the set of indices of the best performing samples.
6: Stopping criterion is maxj(σ

2
j )

(t) < ε.
7: If the stopping criterion is met, then stop the process and identify the combination of the positions of

change points c(i) that minimizes the objective function. Otherwise set t = t+ 1 and iterate from step 2.

4 NUMERICAL RESULTS

In this section, we include results of numerical experiments that illustrate the performance of the hybrid CE
method. In the first example, we consider a synthetic sequence with a known distribution, which allows us to
provide direct comparison with existing techniques. The second example uses aCGH experimental data.

4.1 Example 1: Artificial data with multiple change-points

We generated 100 Gaussian random sequences of length 3500 with 10 abrupt change-points (or 11 segments)
and the standard deviation, σ = 1, and different signal-to-noise ratios (SNRs), SNR = Mean/σ. Table 1
displays the values of the parameters used for this simulation study.

Table 1. The parameter values for the artificial data
Segment 1 2 3 4 5 6 7 8 9 10 11

Length 200 550 150 250 500 250 400 600 200 150 250

SNR 0 2 4 2.5 0 2 3 4 2.5 3.5 1

Table 2 compares the number of change-points estimated by the CE method (function CE.Normal.Mean
in the R package breakpoint), the hybrid CE method, cumSeg Muggeo (2012); Muggeo and Adelfio
(2011) and DNAcopy (Seshan and Olshen, 2016; Olshen et al., 2004; Venkatraman and Olshen, 2007) for 100
generated sequences. The results show that the hybrid CE algorithm (CE hybrid) more accurately estimates the
number of change-points compared to the CE algorithm. The DNAcopy method appears to be very effective
while cumSeg tends to overestimate the number of change-points. We observed a significant improvement
in the processing time in the proposed hybrid CE method over its standard implementation. Figure 1 shows
the profile plots for the first sequence out of 100 generated sequences; all of the methods are in very good
agreement.

4.2 Example 2: Real data (neuroblastoma)

In this example, we used a manually annotated data set (Hocking et al., 2013), where neuroblastoma array-
CGH profiles were analysed. The data are available in the R package neuroblastoma (Hocking, 2013). In
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Table 2. The number of change-points estimated by different segmentation methods for 100 generated se-
quences

Estimated number of 7 8 9 10 11 12 13 14 Average processing

change-points time (in seconds)

CE 0 0 6 14 42 28 9 1 11.28

CE hybrid 1 3 39 51 6 0 0 0 5.39

cumSeg 0 0 1 23 69 3 4 0 0.26

DNAcopy 0 0 0 79 12 6 3 0 0.08

Figure 1. Profile plots of the CE algorithm (red dashed line), the hybrid CE algorithm (blue dashed line), 
cumSeg (green dashed line) and DNAcopy (magenta dashed line) for the artificial data; the true profile is the 

black solid line

this data set, we searched for the longest profile with at least two change-points. We choose the profile with 
profile.id=508, for which chromosome 11 is annotated as having at least one change-point.

Figure 2 shows the comparison of the algorithms (the CE algorithm, the hybrid CE algorithm, cumSeg, and 
DNAcopy) for chromosome 11. All methods identify the most significant change-point very accurately. They 
may however differ in estimating some smaller segments and the less significant change-points.

5 CONCLUSION

In this paper, we have proposed an improved hybrid Cross-Entropy algorithm, which uses the R packages cpm 
and breakpoint. We have compared the performance of the proposed hybrid algorithm with the standard 
CE algorithm (which is also implemented in the R package breakpoint), which does not use results from 
the sequential techniques as its initial parameters. We have also compared the algorithm with other well-known 
segmentation methods: cumSeg and DNAcopy.

Numerical results show that the hybrid CE algorithm tends to underestimate the correct number of change-
points. This may be explained by the use of the Bonferroni correction, which can be conservative. Overall 
processing time was significantly improved using the hybrid implementation compared to the standard algo-
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Figure 2. Array CGH profiles plots for chromosome 11: the CE algorithm (red solid line), the hybrid CE 
algorithm (blue dotted line), cumSeg (green dotdashed line) and DNAcopy (magenta longdashed line)

rithm. While the compared methods may differ in how they estimate the number of change-points, all of them 
appear to be very effective in identifying the locations of the change-points (see Figures 1 and 2).
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