
Using column generation to solve an aircrew training
timetabling problem

D. Kirszenblat a, B. Hill, a V. Mak-Hau b, B. Moran c, V. Nguyen d, A. Novak d

aSchool of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
bSchool of Information Technology, Deakin University, Waurn Ponds, VIC 3216, Australia
cRoyal Melbourne Institute of Technology, 124 La Trobe St, Melbourne VIC 3000, Australia

dDefence Science and Technology Group, Department of Defence, 506 Lorimer St, Fishermans Bend, VIC
3207, Australia

Email: d.kirszenblat@student.unimelb.edu.au

Abstract: The Training Authority Aviation (TA-Avn) is an organisation within the Royal Australian Navy
(RAN) responsible for managing aviation-specific training for all RAN personnel, who are to be employed in
an aviation-related job category. In a temporal sense, the bulk of aircrew training consists of a sequence of
major, structured courses and a number of mandatory short courses for which the prerequisite requirements are
less strict. Both short and long courses are run repeatedly throughout a year with a fixed number of repetitions
and are subject to high and extremely variable course pass rates. It is important to have an ability to quickly
and easily regenerate a new timetable at short notice, potentially on a weekly basis depending on whether
students have to repeat failed short courses.

In previous work we explored a number of approaches including a stochastic approach to optimisation. In
this paper, we adopt a different methodology, using more conventional integer linear programming techniques,
specifically, column generation. The problem of designing feasible schedules is formulated as a network flow
problem that encompasses covering and prerequisite constraints. Then column generation is applied in order
to improve the tractability of this large scale integer linear program. Here, the original problem is decomposed
into a master and subproblem. The master problem is initialised with a set of dummy schedules to which
we allocate the aircrew student population, whilst respecting class capacity limitations. The master problem
then requests solutions from the subproblem that offer some promise of minimising the overall time spent in
training. This process iterates between the master and subproblems until the solution of the master problem
cannot be further improved and we have thus reached an optimal allocation of students to feasible schedules.
Experimental results are compared with those of an ILP approach that assigns feasible schedules to labelled
students.

Keywords: Optimal timetabling, integer linear programming, network flow, column generation

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017
mssanz.org.au/modsim2017

667

D. Kirszenblat et al, Using column generation to solve an aircrew training timetabling problem

1 INTRODUCTION

This paper is concerned with the problem of optimally assigning trainee helicopter pilots in the Royal Aus-
tralian Navy to a least-cost set of training schedules. The objective is to minimise the total time to graduate all
students, as the total time to graduate is a proxy for both financial and morale costs. The key features of this
problem are as follows. Students are required to pass a number of courses in order to graduate. Each course
has multiple instances held at different times throughout the year and referred to as course sessions. Students
must follow feasible schedules of course sessions, where a schedule is deemed feasible if it covers each course
exactly once and satisfies certain prerequisite requirements. Some courses are run by external organisations.
As such, TA-Avn does not have control over the times and capacities of all courses sessions. In (Bayliss et al.,
2016), a stochastic tabu search approach is used to automate the timetabling process. However, in this paper,
we adopt the technique of column generation as a first step toward the goal of obtaining an exact solution.

The approach adopted in this paper is to decompose the problem into two parts. The subproblem of designing
a feasible schedule that covers all required courses and satisfies prerequisite constraints is formulated as a
network flow problem. On the other hand, the master problem of optimally assigning students to feasible
schedules whilst respecting course session capacity constraints is solved using column generation as a heuristic
method. The idea is to iterate back and forth between the two problems. The solution of the master problem
guides the search for an optimal solution of the subproblem and vice versa. The remainder of this paper
is structured as follows. Section 2, which concerns the subproblem, provides a detailed explanation of the
constraints to be satisfied by a feasible schedule. Section 3 examines the master problem. In Section 4 we
compare the results of column generation to those obtained by an ILP. We conclude by offering suggestions
for improvements to the current approach.

2 SUBPROBLEM FORMULATION

This section presents a set of constraints to be satisfied by a feasible schedule. The problem of designing
a feasible schedule that minimises the value of some linear objective function is referred to as the column
generation subproblem.

2.1 Representing the course prerequisite structure

The prerequisite structure can be represented by a digraph G(V,A). Refer to Figure 1 for an illustration of the
digraph associated with the prerequisites listed in Table 1. Let nC denote the number of courses excluding the
entry course. For i = 0, . . . , nC , the digraph G(V,A) includes a vertex vi corresponding to the ith course. For
each pair (ci, cj) consisting of a course cj and its prerequisite ci (if it exists), the digraph G(V,A) includes an
arc aij pointing from vertex vi to vertex vj . Observe that the red arcs in Figure 1 may be omitted, because a
flow along such arcs would bypass certain other vertices corresponding to prerequisite courses. In the example,
course 2 is a prerequisite for courses 3 and 4. As course 3 is also a prerequisite for course 4, one cannot take
course 4 immediately after taking course 2. Hence, a dashed arc is drawn between vertices v2 and v4. In
general, an arc aij may be removed from the digraph G(V,A) if its removal leaves a directed path from vertex
vi to vertex vj . Introduce a sink vF . If the ith course is not a prerequisite for any other course, then the vertex
vi is connected by an arc aiF to the sink vF . Finally, note that there is a partial order < on the vertex set V
such that vi < vj if the vertex vi precedes the vertex vj in a directed path from the source v0, corresponding
to the entry course, to the sink vF . If neither vi < vj nor vj < vi, as is the case with the vertices v4 and v6 in
Figure 1, then introduce the directed arcs aij and aji. Such extra arcs are illustrated in orange in Figure 1.

Table 1. Courses and prerequisites

Course Prerequisite
1 0
2 1
3 2
4 2, 3
5 2, 4
6 2, 3

668

D. Kirszenblat et al, Using column generation to solve an aircrew training timetabling problem

v0 v1
v2

v3

v4
v6

v5 vF

Figure 1. The digraph G(V,A) represents the prerequisite structure

2.2 Exact cover constraints

Let cij denote the jth session of the ith course. (Refer to Table 2 for an example of course session input data.)
Let zij denote a binary decision variable that is equal to 1 if course session cij is included in the schedule and
0 otherwise. The covering constraints ensure that each course is covered by exactly one session in a schedule.∑

j

zij = 1 i = 0, 1, 2, . . . , nC Exact cover (1)

Table 2. An example of course session input data

cij Start Day End Day Capacity
c01 53 53 9
c02 115 115 15
c11 77 217 30
c12 140 279 18
c21 84 226 27
c22 182 325 26

2.3 Flow conservation constraints

Let yij denote a binary decision variable that is equal to 1 if the schedule flows directly from course i to course
j and 0 otherwise. A feasible schedule must satisfy the following flow conservation constraints:∑

aij∈A
yij = 1 i = 0, 1, . . . , nC Unitary outflow (2)

∑
aij∈A

yij = 1 i = 1, 2, . . . , F Unitary inflow (3)

The first set of constraints says that the schedule flows out from every course. The second set of constraints
says that the schedule flows into every course except the entry course and that the schedule terminates in
exactly one course.

2.4 Prerequisite constraints

Let τ(i) denote the index set corresponding to the sessions of course i. Let Sij denote the start day of course
session cij . Similarly, let Fij denote the end day of course session cij . Denote by Pi the set of prerequisites

669

D. Kirszenblat et al, Using column generation to solve an aircrew training timetabling problem

for course i. We impose the following set of constraints:∑
j∈τ(i)

Fij × zij + 1 ≤
∑
l∈τ(k)

Skl × zkl for all k and i ∈ Pk (4)

This constraint ensures that the session of course i in the schedule must finish at least a day prior to the
commencement of the session of course k in the schedule.

2.5 Time constraints

We require additional constraints to reflect the temporal order of course sessions. These constraints are similar
in structure to the prerequisite constraints. Let ESi denote the earliest start day of any session of course i. On
the other hand, let LFi denote the latest end day of any session of course i. Define the constant Mij as the
difference LFi−ESj . We define a terminal arc as an arc that is connected to the sink, and denote by Ã the set
of nonterminal arcs. For each nonterminal arc aij in Ã such that Mij is nonnegative, we impose the following
constraint on the start and end times of its associated course sessions:∑

j∈τ(i)

Fij × zij + 1−Mik(1− yik) ≤
∑
l∈τ(k)

Skl × zkl for all aik ∈ Ã and Mik ≥ 0 (5)

To see how the time constraints work, suppose that the binary decision variable yik is turned on. That is, the
schedule flows directly from course i to course k. Then the associated constraint ensures that session of course
i included in the schedule ends at least one day prior to the commencement of the session of course k included
in the schedule. If yik is turned off, then the associated constraint is inactive. Note that these constraints
imply that a schedule corresponds to a Hamiltonian path through the vertices of the digraph G(V,A). That
is, subtours of the vertices of the digraph G(V,A) cannot arise, as they do not permit a temporal ordering of
course sessions.

2.6 Computing the makespan of a schedule

The makespan or duration of a schedule is a common measure of cost in scheduling problems. In order to
compute the makespan of the schedule, we introduce a linear cost function. Let LS0 denote the latest start
time of any entry course session. (Note that there is only one entry course but possibly several entry course
sessions.) Let t0 denote the difference of the start time of the schedule and the latest start time LS0 of any entry
course session. Let tF denote the end time of the schedule. Define the vector v to be v = (1,y, z, t0, tF). The
first entry of the vector v is equal to 1 and the remaining entries are the decision variables of the subproblem.
Define the vector q to be q = (LS0, 0, 0, . . . ,−1, 1). That is,

q · v = LS0 − t0 + tF

Let τ0 denote the index set corresponding to the entry course sessions. Let τF denote the index set correspond-
ing to the terminal course sessions, i.e., the course sessions in which a schedule can terminate. We compute
the makespan of the schedule by solving the problem to

min q · v (6)
subject to t0 ≤ (S0j − LS0)z0j for all c0j ∈ τ0 (7)
tF ≥ Fijzij for all cij ∈ τF (8)

The constraints are defined so that the variable t0 picks out the difference of the start time of the entry course
session appearing in the schedule and the constant LS0, whereas the variable tF picks out the latest finish time
of any terminal course session appearing in the schedule.

3 MASTER PROBLEM FORMULATION

The objective of the master problem is to assign a fixed number, say N , of students to a set of feasible
schedules so that the total time spent in training is minimised. The key idea of column generation stems from
the observation that the simplex method does not require all columns of the constraint matrix in order to find an
optimal solution. Rather, columns that offer some promise of improving the value of the objective function can
be generated as needed. In our master problem, the columns of the constraint matrix correspond to feasible

670

D. Kirszenblat et al, Using column generation to solve an aircrew training timetabling problem

schedules. Column generation can therefore be used to identify feasible schedules that are likely to aid in
finding an optimal solution as opposed to exhaustively enumerating all feasible schedules before optimising.

Suppose that there is a total of J feasible schedules satisfying the constraints of the subproblem. Once again,
we emphasise that the feasible schedules do not need to be known in advance. For j = 1, 2, . . . , J , let fj
denote the makespan of the jth feasible schedule. Let f = (f1, f2, . . . , fJ) denote the cost vector. Similarly,
for j = 1, 2, . . . , J , let xj denote the number of students assigned to the jth feasible schedule. Let x =
(x1, x2, . . . , xJ) denote the vector of integer decision variables. Let zj denote the column of binary decision
variables from the subproblem indicating which of the course sessions are included in the jth feasible schedule.
The entries of the column zj are treated as constants in the master problem. Similarly, let b denote the vector
whose entries are the capacities of the respective course sessions. Now, the master problem is to

min f · x (9)

subject to
J∑
j=1

xj = N Student assignments (10)

k∑
j=1

zjxj ≤ b Course session capacities (11)

x ≥ 0 (12)

We choose to initialise the master problem using a single dummy column, interpreted as a dummy schedule
to which we assign N students without violating the session capacity constraints. The dummy column need
not be a feasible solution of the subproblem, provided we assign its master variable a sufficiently large cost.
Assuming the master problem is feasible, when the algorithm terminates the dummy column will have either
been driven out of the basis and replaced by some feasible solutions of the subproblem or its corresponding
master variable will have been assigned the value of 0. We set the cost of the dummy schedule equal to M ,
where

M = max{LFj : j = 1, 2, . . . , nc} −min{ESj : j = 1, 2, . . . , nc}+ 1

That is, M is the longest possible makespan of a schedule, and so the dummy schedule is at least as costly as
any other schedule. Let p denote the vector of dual costs. (See, for example, (Bertsimas et al., 1997) for details
of how to obtain the dual costs.) In order to identify a feasible schedule offering some promise of reducing
the total time spent in training, we introduce the objective function (q − p) to the subproblem. That is, the
subproblem is to

min (q− p) · v (13)

subject to the exact cover, flow conservation, prerequisite and time constraints. The iterative method is carried
out as follows. We turn our attention to the subproblem with the updated objective function. That is, we seek
to minimise (q − p) over all schedules. If we find a schedule vk for which (q − p) · vk is negative, then
the corresponding column is said to have negative reduced cost and enters the basis. At the first iteration, at
least one such schedule must exist if the subproblem is feasible. We then re-solve the master problem to find
an optimal assignment of students to the updated set of schedules. The algorithm terminates when we are
unable to find a column with negative reduced cost. At this stage we solve the master problem as an integer
program in order to obtain an integral allocation of students to schedules. The reader is referred to [2] for a
more detailed explanation of column generation.

Note that column generation is used as a heuristic method for solving this particular problem. That is, as many
columns as needed are generated in order to solve the LP relaxation of the master problem, whereby fractional
numbers of students are assigned to schedules. Then an integer solution is obtained by solving a restricted IP
using only those schedules that have been obtained via column generation. As will be seen in the next section,
column generation produces optimal solutions for the datasets that have been tested. However, in principle the
optimal integer solution to the original problem and the optimal solution to the LP relaxation may not share the
same set of variables, in which case the restricted master IP may produce a suboptimal answer or be infeasible.
In the case where only the entry course sessions are at capacity, column generation will produce an optimal
solution. To see this, note that for each entry course session, column generation will fill a shortest schedule
with the required number of students. On the other hand, we have not obtained performance bounds for the

671

D. Kirszenblat et al, Using column generation to solve an aircrew training timetabling problem

case where course sessions other than the entry course sessions are at capacity. However, an exact solution
could be obtained by incorporating the column generation formulation presented here into a branch and price
formulation.

4 EXPERIMENTAL RESULTS

In this section, we compare the results of column generation with those of an ILP according to whichN labeled
students are each assigned exactly one schedule. Both models were implemented using CPLEX and runs were
performed on the same computer (Intel Core i5 processor with 8GB RAM) for comparison of execution times.
The ILP model was implemented in Java, whereas column generation was implemented in MATLAB. As can
be seen from the data in Table 3, column generation obtains the same results as the ILP, albeit more quickly
for larger datasets. The respective values of the objective function are identical for both models and are not
included in the table. Note that the last four rows of Table 3 pertain to data sets for which only the start and
end times of intermediate course sessions were altered; the start and end times of entry and terminal course
sessions were fixed. The difference in computational efficiency may be in part attributed to the high degree
of symmetry associated with the ILP. There are two ways in which symmetry slows down the performance of
the ILP. First, many optimal combinations of schedules may be identical after permuting the labels associated
with the students. Second, an optimal combination of schedules may involve assigning the same schedule
to different students. And as the number of students increases, so does the number of times that the same
schedule has to be computed. This is very wasteful given that the problem is NP hard and the computation
time is expected to grow exponentially with the size of the problem. On the other hand, column generation
works in reverse by assigning a number of unlabelled students to schedules and is therefore insensitive to
changes in the number of students.

Table 3. Experimental results

Courses # Sessions ILP time (s) CG time (s)
5 62 2.92 1.16
5 86 3.62 1.08
6 77 0.37 0.77
20 166 0.27 1.46
20 167 0.26 1.72
20 166 0.28 1.47
20 168 0.27 1.37
20 162 1.55 1.93
20 168 1.95 1.88
20 168 0.26 0.95
20 168 1.83 1.80
20 168 1.97 1.62

5 FUTURE DIRECTIONS

In future work we will modify the network flow formulation to account for pass rates associated with the
courses and will implement branch and price in order to ensure that an exact solution is obtained. Another
idea worth exploring is the possibility of warm starting the ILP solver by providing it with feasible solutions
obtained by some other fast method.

6 CONCLUSIONS

This paper presents a column generation approach to optimally assigning students to training schedules. A
comparison in terms of speed is made between the column generation approach and an ILP approach involving
the assignment of feasible schedules to labelled students. Experimental evidence and symmetry arguments
suggest that the column generation approach performs significantly faster as the size of the problem increases.

672

D. Kirszenblat et al, Using column generation to solve an aircrew training timetabling problem

REFERENCES

Bayliss, C., A. Novak, A. Nguyen, A. Moran, A. Caelli, S. Harrison, and S. Tracey (2016). Optimising aircrew
training schedules using tabu search. Australian Simulation Congress (SimTecT).

Bertsimas, D., and J. N. Tsitsiklis (1997). Introduction to Linear Optimization. Athena Scientific, Mas-
sachusetts

673

