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Abstract:   The problem we consider is motivated by the timetabling of training schedules for Royal 
Australian Navy (RAN) aircrew, in particular helicopter pilots. The RAN aircrew training syllabus is a 
sequence of courses with a prerequisite structure that enforces a strict ordering on some segments of the 
training continuum. Courses have several sessions (repetitions) each year, and each session has a limited 
student capacity. Current ap-proaches to timetabling RAN aircrew training result in students spending 
significant periods (several months, say) waiting between courses. Since students are paid salaries throughout 
their training, such delays are costly. Furthermore, significant waiting periods can negatively affect student 
morale. An efficient allocation of stu-dents to schedules minimises this waiting time.

Our recent work shows that it is possible to apply Knuth’s “Dancing Links” algorithm to rapidly generate 
all feasible schedules for RAN aircrew students. In this context, a feasible schedule is a sequence of course 
sessions that includes a session of each course required by the syllabus, satisfies the prerequisite constraints 
and avoids time clashes. Upon generating all such feasible schedules, one allocates each student to a schedule, 
ensuring that course session capacities are not exceeded. The objective is to minimise the total cost, in this 
case the total makespan of the selected schedules. The makespan of a schedule is the total time between the 
start of its first course session and the end of its last course session.

Realistic RAN aircrew syllabuses can generate tens of millions of feasible schedules. The number of students 
is, however, relatively small: on the order of fifty. Earlier work on simple test syllabuses uses a linear 
pro-gramming relaxation to arrive at an approximately optimal solution to the allocation problem. However, 
as the number of feasible schedules generated by DLX grows, standard “off-the-shelf” Integer Linear 
Programming (ILP) solvers may no longer be a computationally feasible choice.

This paper proposes the use of a Weighted Random Sampling (WRS) algorithm to obtain from the set of 
all feasible schedules a fixed-size sample that satisfies session capacity constraints. Schedules are weighted 
according to their makespan — shorter schedules have greater weights — and the probability that a schedule 
is selected for the sample is determined by its relative weight.

We compare the results of this sampling approach to the optimal solution obtained by a deterministic ILP 
solver for some simple test cases, and demonstrate that provided one can efficiently obtain the set of all 
feasible schedules, the use of a WRS algorithm is a possible alternative to an ILP formulation of the allocation 
problem.
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1 INTRODUCTION

1.1 Problem Description

Royal Australian Navy (RAN) aircrew students undertake long and complex training, in most cases taking
several years to complete. The training syllabus for helicopter pilots is a sequence of major courses whose
ordering is strict, together with a number of short courses that may be undertaken more flexibly between major
courses, for a total on the order of twenty courses. Each course in the syllabus may have many sessions
(repetitions) per year, but students undertake at most one course at a time. The session capacity (class size) is
a hard constraint, and the dates and locations at which sessions occur is fixed, owing to resource requirements
such as the availability of specialised equipment, facilities and instructors. Students may commence training
at one of many entry points throughout the year.

The task is to allocate each student to a feasible schedule — a sequence of non-overlapping course sessions
whose ordering satisfies the prerequisite structure of the training syllabus — in order to minimise the total time
to graduate for all students.

Note that while our focus herein is on RAN helicopter pilots, much of the formulation and associated ideas are
equally applicable to other student types, and indeed other branches of the Australian Defence Force.

1.2 A Two-Phase Approach To Timetabling

This problem has a convenient division into two phases: the determination of feasible schedules, and the
allocation of each student to one of these schedules. Determining feasible schedules is a constraint satisfaction
problem, in which one enumerates sequences of course sessions subject to curriculum requirements. The
allocation of students to schedules must ensure that none of the course session capacities are exceeded.

Forthcoming work of Nguyen et al. (2017) shows that the enumeration of feasible schedules may be posed as
an exact cover problem. In brief, for exact cover problems one has a finite set Ω and a collectionA = {An}Nn=1

of subsets of Ω that cover Ω:
⋃N

n=1An = Ω. One seeks a subcollection A∗ = {Ank
}Kk=1 of A of disjoint

subsets that also cover Ω. Note that such a subcollection may not exist. Knuth (2000) presents Algorithm X, a
recursive, nondeterministic, depth-first backtracking algorithm implemented using a circular doubly-linked list
data structure — collectively referred to as DLX — to solve such problems, instances of which include Sudoku
and the N -queens problem. Knuth uses a 0 − 1 matrix to describe exact cover problems, in which columns
correspond to elements of Ω and rows correspond to the subsets in A. Entry (i, j) of this matrix is 1 if subset
i contains element j of Ω, and is zero otherwise. In our context, one forms an analogous tableau in which
the rows correspond to individual course sessions and constraints are represented by collections of columns.
Using this approach and applying a modified form of Knuth’s algorithm, one can efficiently enumerate all
feasible schedules for a given syllabus. For an example syllabus consisting of 15 courses and between 12 and
18 sessions per course, DLX generates all schedules (∼ 132 million) in approximately 40 seconds on modest
desktop hardware (Nguyen et al., 2017).

The allocation of students (the number of which is relatively small; on the order of 50), subject to course
session capacity constraints and with the objective of minimising the total time to graduate for all students,
constititutes the second phase. One may formulate this allocation problem as an Integer Linear Program (ILP);
indeed, this was our initial approach and is still the subject of ongoing work. However, the number of feasible
schedules generated by DLX can result in an ILP with memory requirements that are prohibitively large for
the hardware upon which it must be solved. This article can thus be viewed as an initial exploration of an
alternative to formulating the second phase as an ILP.

1.3 Related Work

The military training-specific timetabling literature is sparse, and existing works present solutions to problems
with objectives and constraints quite distinct from our own. Lee et al. (2009) consider the problem of allocating
instructors to classes at the Korea Army Training Centre, in which an instructor gives a lecture to only one
class at a time, and each class must be lectured by one instructor. Students are considered as a cohort, in that
all recruits in the same batallion undertake the same subjects at the same time. Using a graph formulation
— as is common in timetabling problems (de Werra, 1997) — the authors describe an edge-colouring based
heuristic for its solution.
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Wang et al. (2010) study the problem of scheduling term-end examinations for cadets at the United States
Military Academy’s West Point facility. The authors employ a hybrid heuristic–integer programming approach
and propose scheduling multiple sessions of some exams in order to deal with their otherwise intractable
problem. While the allocation of students to one of many repeated sessions is conceptually similar to our
problem, their objective is to minimise the number of such repeats. Moreover, the number and dates of the
repeat sessions in our problem are given, rather than variables to be determined.

Related timetabling and scheduling problems are well-studied in other contexts. We note two in particular:
curriculum-based university timetabling (Bettinelli et al., 2015) and job-shop scheduling (Graham et al., 1979).
In both cases, again the key difference between our problem and those typically studied in these domains
appears to be that in our case, the time periods over which course sessions take place and their associated
locations is fixed in advance.

The approach taken to other timetabling and scheduling problems does not follow the two-phase paradigm
described in Section 1.2. Rather, students are allocated to courses and resources as the algorithm proceeds.
Such is the case for meta-heuristic algorithms such as tabu search and simulated annealing (Schaerf, 1999) and
also column generation, a technique often applied for large-scale integer or mixed-integer programs (Barnhart
et al., 1998). We have nonetheless chosen to explore the two-phase paradigm as an alternative.

Before detailing our approach, we give a precise formulation of the problem.

2 PROBLEM FORMULATION

We consider a single training syllabus C, which consists of a (finite) set of courses Ci, i ∈ I . Each course Ci

has a number of course sessions Cij , j ∈ Ji, and a (possibly empty) set of prerequisites Pi ⊂ C that must be
completed by a student before they undertake course Ci. A course session Cij has a capacity Mij ∈ N, the
maximum number of students it can accommodate, and a time extent τij = [tsij , t

e
ij ] ⊂ R+ defined by a start

and end time. A feasible schedule S for syllabus C is then a sequence (Cij)i∈I,j∈Ji of course sessions such
that

(i) For every course Ci ∈ C, there exists exactly one course session Cij ∈ S;

(ii) If Cij ∈ S, for every Ci′ ∈ Pi there is a course session Ci′j′ ∈ S such that Ci′j′ occurs before Cij in S.
That is, the prerequisite structure must be obeyed.

(iii) If Cij , Ci′j′ ∈ S, then τij ∩ τi′j′ = ∅. That is, no two course sessions in the same schedule have
overlapping time extents.

We denote by S the set of all feasible schedules, which for us is obtained through the modified DLX algorithm
alluded to in Section 1.2. For every S ∈ S we define the cost E(S) of S as the total length of time from the
start of its first course session to the end of its last course session: if the first course session of S is Cij and the
last course session of S is Cmn, then E(S) = temn − tsij . We write N for the number of students required to
undertake syllabus C and n(S) for the number of students we assign to schedule S ∈ S. For S ∈ S, define

δij(S) =

{
1 if course session Cij ∈ S
0 otherwise.

The course session capacity constraint then becomes∑
S∈S

n(S)δij(S) ≤Mij for every course session Cij . (1)

We assume that each student is identical, so we may regard the assignment ofN students toN (not necessarily
distinct) schedules as simply the selection of N schedules (with bounded replacement; see Section 3) from S.
Taking this view (which is more convenient for the sampling approach we propose herein), we consider n(S)
to be the number of times that schedule S is selected (i.e. the multiplicity of S in the sample S), so that∑

S∈S
n(S) = N. (2)
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The sample S is thus a multiset. Our objective is to minimise the total training time over all students, which is
simply the sum of the costs of all the schedules in the sample S counted according to multiplicity:

T (S) =
∑
S∈S

n(S)E(S) (3)

With this notation in place, the sampling problem is as follows:

Find from S a sample S of size N that satisfies (1)–(2) and minimises (3). (P)

3 WEIGHTED RANDOM SAMPLING

Weighted Random Sampling (WRS) is the task of selecting at random a fixed number of items from a popu-
lation, where the items are weighted and the probability that an item is selected is determined by its relative
weight in the population (Efraimidis and Spirakis, 2006). Together with the modified DLX algorithm to gen-
erate all feasible schedules, we propose the use of a modified existing WRS algorithm to solve (P).

A WRS may be generated with replacement (Park et al., 2004) or without replacement (Wong and Easton,
1980). Using an ILP solver on test cases, we observed that the solutions corresponding to optimum values of
the objective function (3) frequently feature some schedules having multiple students assigned them. In order
to maintain the possibility that we attain this optimum with a WRS algorithm, clearly we must generate our
sample with replacement. We must, however, satisfy (1). The maximum number of times that a particular
schedule may appear in the sample is determined by the capacities of its course sessions, and those of the other
schedules in the sample. We are therefore dealing with WRS with bounded replacement.

Many algorithms for WRS are developed for applications in which the size of the population is very large
or perhaps even unknown, such as sampling from data streams in scientific simulations, web server logs or
financial markets. Hardware and/or time constraints make it desirable that samples be obtained in a single
pass over the population (Park et al., 2004). If the population size is unknown, an auxiliary storage known as
a reservoir may be employed to maintain a fixed-size sample throughout the process (Vitter, 1985). Although
our population S is of known size thanks to its efficient enumeration via the DLX algorithm, |S|may be large
and so one-pass WRS with a reservoir is attractive. Moreover, one may sample schedules as DLX generates
them, in which case one-pass WRS with bounded replacement using a reservoir is an obvious choice.

3.1 The Efraimidis-Spirakis Algorithm

Efraimidis and Spirakis (2006) present an algorithm for one-pass WRS with a reservoir, for sampling without
replacement. One-pass WRS without replacement over large or unknown populations presents a challenge in
the determination of the selection probabilities from the item weights: the probability that an item is selected
is given by the ratio of its weight to the sum of the weights of all the items not in the sample. Such a sum may
be computationally expensive or — when the population is of unknown size — impossible.

The key insight of Efraimidis and Spirakis is that probabilities can be determined by the exponentia-
tion of uniform random variables using the item weights. More precisely, let U1 and U2 be indepen-
dent random variables with uniform distributions on [0, 1] and let w1, w2 > 0 be weights. Defining
X1 := (U1)1/w1 and X2 := (U2)1/w2 , they show that P [X1 ≤ X2] = w2

w1+w2
, with a straight-

forward extension to k > 2 weights. This avoids the onerous computation of the aforementioned de-
nominator. Using this fact, for each item in the population they generate a key: a random number
in the unit interval raised to a power given by the reciprocal of that item’s weight. Using our nota-
tion from Section 2, the WRS is then obtained by selecting the N (say) items with the largest keys:
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Algorithm 1: Efraimidis–Spirakis
Input : A population S of M weighted items
Output: A reservoir S with a WRS of size N
Insert first N items of S into S
for each item Si ∈ S do

Calculate key ki = u
1/wi

i , where ui = random(0, 1)
end
for i← N + 1 to M do

Set theshold T = min{kj |Sj ∈ S}
Calculate key ki = u

1/wi

i , where ui = random(0, 1)
if ki > T then

Replace item with minimum key in S by item Si

end
end

In a subsequent paper, Efraimidis (2015) describes an extension of Algorithm 1 to sampling with bounded
replacement, in which each item Si may have its own multiplicity ki. The idea is to deploy N instances of
Algorithm 1, each of which generates a WRS of size 1. At any point, each instance is one item behind the
previous instance, so that a given item S is processed by each instance in turn, thus ensuring that the algorithm
only makes one pass. Multiplicities are accounted for by excluding from remaining instances those items
whose multiplicity in the sample has been reached. If such an item is replaced in the sample by another item
and its multiplicity therefore reduced, it is submitted to the next instance of the algorithm.

3.2 Adaptation to Timetabling

Adapting Efraimidis’ extension of Algorithm 1 for WRS with bounded replacement to the timetabling problem
(P) amounts to keeping track of the course session capacities, and ensuring that when the algorithm terminates
we satisfy constraint (1). This adaptation is reasonably straightforward, moreso if one assumes that the set
of all feasible schedules S is known. Indeed, complete knowledge of S affords significant simplifications.
We can determine at each step those feasible schedules that, if one were added to our sample S, would pre-
serve the inequality (1). To this end, define Si := {S ∈ S | S ∪ {S} satisfies constraint (1) at iteration i},
where schedules in S are counted according to multiplicity, so that if S appears n(S) times in S (re-
call that S is a multiset), S appears (n(S) + 1) times in S ∪ {S}. At iteration i, we need only gen-
erate keys for schedules in Si. This removes the need for the use of a threshold key value; we may
simply extract the largest key from those generated. The schedule corresponding to this largest key then
constitutes a reservoir with a WRS of size 1. We add this schedule to our sample S and adjust the
(global) course session capacities accordingly, repeating this process until we have obtained N schedules:

Algorithm 2: Efraimidis–Spirakis modified for (P)
Input : A population S of M weighted items
Output: A WRS S of size N
Initialise S = ∅
for i← 1 to N do

Determine Si
for each schedule Sj ∈ Si do

Calculate a key kj = u
1/wj

j , where uj = random(0, 1)

end
Determine kj∗ = max{kj |Sj ∈ Si}
Add to S the schedule Sj∗ corresponding to kj∗
for each course session Cl∗m∗ in schedule Sj∗ do

Ml∗m∗ ←Ml∗m∗ − 1
end

end
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4 RESULTS AND FUTURE WORK

We compare the results of using Algorithm 2 to solve (P) to the optimal solution obtained by a deterministic
ILP solver for three test cases that model the sequence of major courses undertaken by RAN aircrew. We
used our modified DLX algorithm to generate all feasible schedules S, and for schedule weights we use an
exponential distribution of makespans, so that schedule S has weight w(S) = λ exp(−λE(S)). In each case
we use λ = 0.1. Table 1 summarises our results, with objective function values given in days. We see that

Table 1. Summary of results for the 3 test cases
Case N # courses # sessions/course # schedules ILP optimum WRS T (S)

1 20 3 3− 4 42 15604 15604
2 24 6 9− 17 737 16152 16152
3 24 5 12 5882 24440 28010

Algorithm 2 recovered the optimum value of the objective function T (S) for Cases 1 and 2, but exceeded the
optimum (minimum) by over 14% in Case 3. We believe that this may be due to a poor choice of schedule
weights. The parameter λ controls the steepness and decay of the weight distribution, so that finding the
optimal λ for a given problem is an optimisation problem in itself. This suggests the potential use of an
annealing procedure on λ in order to improve the value of T (S).

We tested Algorithm 2 on several larger syllabuses, for which DLX generated schedules numbering from under
15, 000 to over 3 million. However, in each of these cases the algorithm reached an iteration i < N at which
Si was determined to be empty, i.e. there does not exist any schedules that could be included in the sample
without violating (1). Upon closer examination of the partial samples obtained in these cases, we observed that
a small number (either one or two) of schedules were selected their maximum number of times (equivalently,
no additional students could be allocated these schedules). These schedules appeared to feature a ‘critical’
sequence of course sessions, in that by allocating as many students as possible to them, they reduced to zero
the available capacities of all other feasible schedules. This ‘rigidity’ displayed by the algorithm again seems
a symptom of a poor choice of weight function, and despite testing numerous values of λ, we were unable
to obtain full samples in these cases. A potential solution to this issue would be to incorporate the remaining
capacity of a schedule into the weight distribution, in such a way that given two schedules of equal length, the
schedule with the greater remaining capacity is assigned a higher weight. This would, however, entail updating
schedule weights with each iteration, which may be undesirable when the number of schedules is large.

Indeed, taking the aforementioned issues into account, future work should include a strong focus on how to
determine the weights of the schedules. Rather than specifying a specific functional form for their distribution,
the performance of Algorithm 2 might be better served by a nonparametric approach, in which the schedule
data determine the weights intrinsically.

5 CONCLUSION

We introduced a two-phase paradigm for timetabling military aircrew training, in which the generation of
feasible schedules is separated from the allocation of students to these schedules. Schedules are generated
using a modified version of Knuth’s “Dancing Links” algorithm. Owing to computational constraints, as
an alternative to integer linear programming formulations of the allocation phase we proposed the use of
an existing Weighted Random Sampling algorithm, modified to account for course session capacities. This
approach has the advantage of simplicity, ease of understanding and implementation. Preliminary results on
simple syllabuses show some promise, however further research is needed to ensure its reliability on larger,
more complex syllabuses, and a formal complexity analysis and proof of consistency is necessary to obtain
theoretical confirmation of its strengths and weaknesses.
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