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Abstract: Defence capability planning often requires prioritising a list of candidate 
programs/projects/products to determine the portfolio of investments that provide the best value for money 
given resource constraints and uncertainty, organisational constraints, and program interdependency 
constraints. Many prioritising methodologies such as ranking models, scoring models and the analytic 
hierarchy process (AHP) may work well for programs that are predominantly independent of one another. 
When the programs are interdependent, those methods fail to explicitly capture dependencies between 
programs and the resource uncertainty. 

This paper explores the use of a mathematical programming methodology for prioritising interdependent 
Defence programs. A service-based interrelationship identification method is used to measure the different 
levels of interdependencies between programs. Resource uncertainty is modelled through variations of possible 
budget limitations. Strategic objectives are linked by multiple scenarios with different weights. For different 
application situations, two mathematical models, the Quadratic Knapsack Model (QKM) and the Budget 
Scenario Model (BSM), are proposed to formulate the optimisation problem for prioritising interdependent 
programs. Algorithms and properties of the proposed optimisation models are further discussed through the 
application of the models to two simple Defence capability prioritisation problems. The preliminary results 
have shown the models’ potential applications in support of Defence capability planning. 
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1. INTRODUCTION 

Defence’s focus on a joint and integrated approach to the development of future Defence capability involves 
with the complexity of interdependencies among the investment programs/projects/products. One of the 
challenges in the Defence capability planning process is prioritising a list of candidate programs/projects to 
determine the portfolio of investments that provide the best value for money given resource constraints and 
uncertainty, organisational constraints, and program interdependency constraints. Many prioritising 
methodologies such as ranking models, scoring models and the analytic hierarchy process (AHP) may work 
well for programs that are predominantly independent of one another. When the programs are interdependent, 
those methods fail to explicitly capture the interdependencies between programs and the resource uncertainty 
(Dickson et al (2001); Order (2009)).  
 
The complexity introduced by the program interdependencies requires a new integrated decision-support tool 
to assist in the process of prioritising Defence investment programs. The existing prioritising models either 
completely ignore the interdependencies or treat them as binary relationships, in which 0 or 1 values are 
assigned to the interdependent program/project pairs. Dickson et al (2001) used the binary representation of 
the project interdependencies in the nonlinear integer objective function with linear budget constraints while 
Greiner et al (2003) represented the binary interdependency relationships as additional linear constraints in 
their linear 0-1 integer programming model. Although the binary representation methods can effectively 
address the existence of the project interdependency, they have limitations in modelling the variable levels of 
interdependencies as the strength of interdependencies among programs may vary from large to insignificant. 
 
This paper explores the use of a mathematical programming methodology for prioritising interdependent 
Defence programs. A service-based interrelationship identification method is used to measure the different 
levels of interdependencies between programs. Resource uncertainty is modelled through variations of possible 
budget limitations. Strategic objectives are linked by multiple scenarios with different weights. For different 
application situations, two mathematical models, the Quadratic Knapsack Model (QKM) and the Budget 
Scenario Model (BSM), are proposed to formulate the optimisation problem for prioritising interdependent 
programs. Algorithms and properties of the proposed optimisation models are further discussed through the 
application of the models to two simple Defence capability prioritisation problems. The preliminary results 
have shown the models’ potential applications in support of Defence capability planning. 

2. MEASURING PROGRAM INTERDEPENDENCIES USING SCMILE FRAMEWORK  

In the current Defence acquisition process, a program may include many projects (future systems) and products 
(existing systems). Thus the interdependencies between programs are reflected by the projects/products 
interdependencies in a networked system of systems (SoS) manner. For simplicity, we use system to refer to a 
project or a product. In a joint and integrated operational environment, the relationships between systems are 
characterised as services, where one system is the provider of the service, and the other is the consumer. These 
services may be categorised as Sensing(S), Command and Control (C), Physical Mobility (M), Information 
Mobility (I), Logistics and Support (L), and Engagement (E), or simply SCMILE as described in Lowe (2015). 

Under the SCMILE Framework, Subject Matter Experts (SMEs) are asked to identify and quantify the 
interrelationships between providers and consumers of the services. To represent the strength of the 
interdependencies, a five-point “Maturity Model” (Christensen (2012)) was used to measure the strength of the 
interdependencies between systems based on SME’s assessment on the criticality of services of “mission 
success”.  
 
A brief description of each level of measuring the strength of interdependencies is given by Christensen (2012) 
as follows: 
Level 0 – Independent: The systems do not have any influence over each other.  
Level 1 –Tangential: Systems have a largely insignificant bearing on each other with respect to an 
Interdependency Factor. With some adjustment, the system could continue to function even if other tangentially 
connected systems were removed.  
Level 2 – Associated:  The system is dependent or interdependent in ways that would result in the system being 
significantly affected if the associated system were disabled.  
Level 3 – Dependent:  The system is strongly connected to another system. The system would be severely 
impacted if a depended-upon system were removed or adversely affected.  
Level 4 – Mandatory:  The system requires a connected system in order to function. The program may share 
critical resources with another system or depend upon the other for basic operational capability. The system 
cannot survive if the depended-upon system is removed or severely affected. 
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3. INTEGRATING SCMIL INTERDEPENDENCY DATA INTO PROGRAM OPTIMISATION 

MODELLING 

We investigate a methodology to integrate the quantified SCMILE interdependency data into program/project 
prioritisation modelling.  Assume that a multi-criteria decision analysis (MCDA) method has been applied to 
evaluate the “values” of each system, according to its roles aligned with strategic objectives. 

Given n interdependent systems, P1,…Pn, each has a capability value iv , and a certain budget ic , we aim to 

select a subset of systems which can achieve maximum capability values and satisfy the budget constraints B. 
The strength of interdependencies between systems is identified by means of the SCMILE Framework.  For 
each service of SCMILE, the interdependency data can be represented as an nn ×  Dependency Matrix 

)( ijdD =  . Each element in D, ijd varies from zero to four, representing the level of dependency that system 

i has on system j.  A value of zero implies that the system i  is entirely independent of system j. A non-zero 

value of ijd  implies that system i  has a certain level of dependency on system j. 

 
Assume that a system i can achieve its “independent” capability at iα  level (in percentage, 10 ≤≤ iα ) of its 

capability value iv , the remaining part of the full capability, (1- iα ), should be attributable to its dependent 

systems. Based on the SCMILE data and its derived Dependency Matrix D, the percentage dependency 
component of system j on system i  can be calculated as: 
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Then, we have two optimisation models for prioritising systems as follows: 

(1) Quadratic Knapsack Model (QKM) 

When only a generic strategic scenario is considered and one set of system values are available, then the 
prioritisation problem can be formulated as a variant of Quadratic Knapsack Model (Kellerer et al (2004); 
Taylor (2015)) as follows: 
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where { }1,0∈ix  is the integer decision variable, 1=ix means the system i  is selected, otherwise system i
is not selected. In formulating QKM, we have assumed that all systems are synergistic, that is, the value of 
individual systems can be additive and enhanced when they work together.  

When there is no interdependency between systems, 0=ijd , 1=iα , 0=ijβ (i=1,..n; j=1,..n), the objective 

function (2) becomes a linear function and the model becomes a linear Knapsack problem (Greiner et al 
(2003)). 

For QKM, the SCMILE data can be integrated into the objective function (1) either as a maximum matrix over 
all services (i.e. the worst scenario in terms of interdependencies) or as a single dependency matrix individually. 

(2) Budget Scenario Model (BSM) 

When multiple strategic scenarios are considered and the system values for each scenario are given, then the 
prioritisation problem can be formulated as a variant of Budget Scenario Model (Taylor (2015)) as follows: 
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Subject to  Bxc i
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where m is the number of scenarios, each scenario has a probability of occurring ),...1(, misi = , and system j 

in scenario i  has a value ijv .  

To integrate SCMILE interdependency data into the BSM objective function (5), a single service may be 
regarded as a “scenario”.  It is noticed that the BSM objective function (5) is a non-linear non-smooth function. 
Although the BSM problem is NP-hard, it can be solved with a polynomial time approximation algorithm 
(Taylor (2015)). 

4. APPLICATION EXAMPLES 

4.1. Example of Quadratic Knapsack Model (QKM) 

To test applications of the proposed QKM model, we use a small example of a Defence systems selection 
problem as described in Greiner et al (2003). Fifteen systems are considered and the total fund available is 
$196.46M. The “value” of each system was evaluated by means of the Analytical Hierarchy Process and listed 
in the following Table 1.  

In Table 1, the selected set of systems is called a portfolio. For the available fund of $196.46m, we first assumed 
all systems are independent, that is, D_0 =( ijd ), 0=ijd  (for all 15,...2,1, =ji  ). Then we use the 

interdependency matrices D_S, D_C, D_M, and D_E to test the effect of the system interdependencies. The 
details of those SCMILE matrices are included in the Appendix.  D_Max is a matrix taking the maximum 
values of D_S, D_C, D_M, D_E as its elements. Table 1 presents a comparison of the optimal system selection 
results for different interdependency matrices.  1=ix  indicates the system i was selected, while a “0’indicates 

the system i was not selected. 

Table 1. Comparison of portfolio optimisation results  

 

The optimisation model was computed in Microsoft Excel Solver (non-linear solver is used). The 
computational results in Table 1 show that  
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(1) If all systems are independent (D_0), the proposed Quadratic Knapsack Model becomes a linear Knapsack 

problem and the optimisation results are exactly the same as those obtained by Greiner et al (2003).  
(2) When the interdependency data are integrated with the QKM, the optimisation results are affected by the 

interdependencies. The interdependent systems appear to stay together either in or out of the portfolio. For 
example, for interdependency matrix D_E, there are seven systems with strong dependencies on P5 and 
those systems form a group to stay in the portfolio, even though P5 has the largest cost. 

(3) It is noticed that for all five different interdependency cases, at least 11 of the 15 (73%) system alternatives 
are identical with those obtained by the optimisation model without interdependency data. Among them, 
D_C has the same results with D_0. Although some portfolio selections are the same, the QKM model 
presents different values for the selected systems. For example, D_E selected P6 with a value of 0.59, but 
P6’s original value is 0.66. The partial value of the systems selected by QKM are due to the effects of its 
dependent systems as the system’s full value can be achieved only if all of  its dependent systems are 
selected.  The QKM results provide the decision maker with a quantitative measure of the effects of 
interdependencies and with additional insight regarding the robustness of recommended portfolio options 

 

In the above Table 1, it is assumed that the maximum 
budget available is known to be $196.46m. Figure 1 
presents the changes of the portfolio values against 
different available funds using QKM with different 
SCMILE interdependency matrices.  Because the 
QKM model incorporates the aggregated effects of 
interdependencies, the change of the portfolio value 
appears to be reasonably smooth. A comparison with 
individual interdependency matrices shows that the 
QKM model with maximum interdependency 
matrix D_Max produces the lowest portfolio values 
while “zero” interdependency matrix D_0  provide 
the highest portfolio values.  

Figure 1. Portfolio value versus budget- QKM  

4.2. Example of Budget Scenario Model (BSM) 

The Budget Scenario Model (BSM) is a budget –value problem in which the best value for a range of budgets is 
sought (Taylor (2015)). A list of initiatives (or systems) is provided each with an anticipated cost. Each 
initiative/system is given a value (score) against a number of scenarios with an occurring probability. BSM aims 
to find a subset of initiatives whose total cost is bounded by an available fund to achieve the maximum value for 
all possible scenarios. In BSM modelling, it is assumed that only one of the scenarios will occur (with a given 
probability) and only the best initiative chosen for that scenario will be applied at the time the scenario occurs 
(Order (2009)).  There is no synergy requirement among the initiatives/systems. 

We use an example of prioritising military initiatives described in Order (2009). The problem is composed of 
fifteen initiatives in four scenarios.  The details of data are listed in Table 2. In Order (2009), it is assumed a few 
binary interdependencies such as “Initiative O requires initiative K in Scenario 1” and “Initiatives J,L, and H all 
require Initiative B in Scenario 3”. By means of the SCMILE data structure and the BSM model in (5)-(7), those 
binary interdependencies (D_Bin) among the initiatives can be easily represented by dependency matrices. For 
example, “Initiative O requires initiative K in Scenario 1” means that for the dependency matrix in which Scenario 
1 is represented, element 414,1 =d as O is in the 1st row and K is in the 14th column.  Here we have assumed that 

each dependency matrix represents one scenario. For test purposes, we also applied BSM modelling for the 
situations of independent initiatives (D_0) and non-binary interdependency D_SCME, in which the 
interdependency for each scenario is represented by D_S, D_C, D_M, and D_E individually. 

Computationally, optimisation modelling was implemented in the Microsoft Excel Solver. An evolutionary solver 
is used for solving the BSM problem as the modelling contains a non-smooth objective function (5).  
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Table 2. Budget Scenario Model – Data sheet from 
Order (2009) 

Table 3. Comparison of optimisation results - 
Budget Scenario Model 

 

 

Figure 2. Portfolio value achieved versus increased 
budget – BSM. 

The BSM results presented in Figure 2 and Table 3 
have shown that 

(1) The interdependency data have significant 
effects on the BSM initiatives optimisation. For the 
same budget constraint, even though the selections 
of initiatives are the same, the portfolio values may 
be different because of different interdependencies 
in individual scenarios. For example, when budget 
B=4, D_0, D_Bin, and D_SCME all have the same 
selection of N and O, but the maximum values used 
in the objective function (5) are different: for 
scenario 1, D_Bin can only takes initiative N’s value 
of 6 as the maximum value because O depends on 
K, while D_0 and D_SCME can take O’s value of 
10 as the maximum value. 

(2) Like the QKM, the grouping effects of the 
interdependencies also appear in BSM modelling. It 
chooses groups of initiatives that are either 
interdependent or independent. For example, for

 D_SCME, initiative J and O are chosen together a few times because there are independent of each other in 
D_S,D_C,D_E, and are highly interdependent  in D_M.  

(3) As the BSM modelling has a non-smooth objective function, the effects of interdependences are not 
aggregated. Table 3 shows that the selection of initiatives changes significantly even for a small amount of 
variations in budget.  Figure 2 displays the “stair-type” change of the portfolio value versus the change of budget.  

5. CONCLUSION AND FURTHER WORK 

This study proposes two mathematical programming models, Quadratic Knapsack Model (QKM) and Budget 
Scenario Model (BSM), to integrate the effects of interdependency data into the program prioritisation problem. 
The algorithms and mathematical properties of the above models are further analysed and discussed with two 
numerical examples. These illustrative examples have demonstrated the feasibility of the proposed mathematical 
models in producing optimisation solutions in prioritising interdependent systems.  
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With the primary aim of integrating the available SCMILE interdependency data into the Defence prioritisation 
problem, this study may form a basis for the further development of an extensive value-based system modelling.  
Further work may include 

(1)  Application of the proposed models to a Defence capability development problem, including client 
engagement, data collection, and model refinement; 

(2) Extending the proposed models to Defence system effectiveness modelling, including dealing with 
system uncertainty and the development of decision-support tool set. 
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APPENDIX: SCMLE DATA USED IN THIS STUDY 

Sensing (D_S)        Command &Control (D_C) 

     

Physical Mobility (D_M)     Engagement (D_E) 
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