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Abstract:  The purpose of the paper is to (i) show that univariate GARCH is not a special case of multivariate 
GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements 
of the random coefficient autoregressive coefficient matrix, that are not consistent with Full BEKK, and (ii) 
provide the regularity conditions that arise from the underlying random coefficient autoregressive process, for 
which the (quasi-) maximum likelihood estimates have valid asymptotic properties under the appropriate 
parametric restrictions. The paper provides a discussion of the stochastic processes that lead to the alternative 
specifications, regularity conditions, and asymptotic properties of the univariate and multivariate GARCH 
models. It is shown that the Full BEKK model, which in empirical practice is estimated almost exclusively 
compared with Diagonal BEKK, has no underlying stochastic process that leads to its specification, regularity 
conditions, or asymptotic properties 
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1. INTRODUCTION

The most widely estimated univariate and multivariate models of time-varying volatility for financial data, as 
well as any high frequency data that are measured in days, hours and minutes, is the conditional volatility 
model. The underlying stochastic processes that lead to the specifications, regularity conditions and asymptotic 
properties of the most popular univariate conditional volatility models, such as GARCH (see Engle (1982) and 
Bollerslev (1986)) and GJR (see Glosten et al. (1993)) are well established in the literature, though McAleer 
and Hafner (2014) have raised caveats regarding the existence of the stochastic process underlying exponential 
GARCH (EGARCH) (see Nelson (1990, 1991)).  

However, the same cannot be said about multivariate conditional volatility models, specifically Full BEKK 
(see Baba et al. (1985) and Engle and Kroner (1995)), for which the underlying stochastic process that lead to 
the specification, regularity conditions and asymptotic properties have either not been established, or are simply 
assumed rather than derived. These conditions are essential for valid statistical analysis of empirical estimates. 

The purpose of the paper is to show that the stochastic process underlying univariate GARCH is not a special 
case of that underlying multivariate GARCH, except under parametric restrictions on the off-diagonal elements 
of the random coefficient autoregressive coefficient matrix that are not consistent with Full BEKK. The paper 
provides the regularity conditions that arise from the underlying random coefficient autoregressive process, 
and for which the (quasi-) maximum likelihood estimates (QMLE) have valid asymptotic properties under the 
appropriate parametric restrictions. 

The Full BEKK model is estimated almost exclusively in empirical practice, to the exclusion of Diagonal 
BEKK, despite the fact that Full BEKK has no underlying stochastic process that leads to its specification, 
regularity conditions, or asymptotic properties, as shown in the proposition and four corollaries. 

The plan of the paper is as follows. Section 2 provides a discussion of the stochastic processes, regularity 
conditions, and asymptotic properties of univariate and multivariate GARCH models. Section 3 shows that the 
Full BEKK model has no underlying stochastic process that leads to its specification, regularity conditions, or 
asymptotic properties. Section 3 gives some concluding comments. 

2. UNIVARIATE AND MULTIVARIATE GARCH MODELS

2.1    Univariate Conditional Volatility Models 

Consider the conditional mean of financial returns for commodity i, in a financial portfolio of m assets, as 
follows: ݕ௜௧ = (௧ିଵܫ|௜௧ݕ)ܧ + ݅ ,	௜௧ߝ = 1, 2, … ,݉, (1) 

where the returns,	ݕ௜௧ = Δ݈݃݋ ௜ܲ௧, represent the log-difference in financial commodity prices, ௧ܲ,	ܫ௧ିଵ is the 
information set for all financial assets at time t-1, ܧ(ݕ௜௧|ܫ௧ିଵ)	is the conditional expectation of returns, and ߝ௜௧ 
is a conditionally heteroskedastic error term.  

In order to derive conditional volatility specifications, it is necessary to specify the stochastic processes 
underlying the returns shocks, ߝ௜௧. The most popular univariate conditional volatility model, GARCH model, 
is discussed below.  

Consider the random coefficient autoregressive process underlying the returns shocks, ߝ௜௧, as follows: 

௜௧ߝ = ߶௜௧ߝ௜௧ିଵ+	ߟ௜௧	, ݅ = 1, 2, … ,݉, (2) 

where ߶௜௧~݅݅݀(0, ௜ߙ ,(௜ߙ ≥ ,௜௧~݅݅݀(0ߟ ,0 ߱௜), ߱௜ ≥ ௜௧ߟ ,0 =  .௜௧/ඥℎ௜௧ is the standardized residual,  ℎ௜௧ is the conditional volatility of financial asset iߝ
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Tsay (1987) derived the following conditional volatility of financial asset i as an ARCH process (see Engle, 

௜௧ଶߝ)ܧ :(1982 (௧ିଵܫ| ≡ 	ℎ௜௧ = 	߱௜ + ௜௧ିଵଶߝ௜ߙ  ,     (3) 

 

where ℎ௧  represents conditional volatility, and ܫ௧ିଵ  is the information set available at time t-1. A lagged 

dependent variable, ℎ௧ିଵ, is typically added to equation (3) to improve the sample fit: 

 ℎ௜௧ ≡ ௜௧ଶߝ)ܧ (௧ିଵܫ| = ߱௜ + ௜௧ିଵଶߝ௜ߙ ௜ߚ ,௜ℎ௧ିଵߚ	+  ∈ (−1, 1).    (4) 

 

From the specification of equation (2), it is clear that both ߱௜  and ߙ௜  should be positive as they are the 
unconditional variances of two different stochastic processes. In equation (4), which is a GARCH(1,1) model 
for commodity i (see Bollerslev, 1986), the stability condition requires that ߚ௜ ∈ (−1, 1).  
The stochastic process can be extended to asymmetric conditional volatility models (see, for example, McAleer 
(2014)), and to give higher-order lags and a larger number of alternative commodities, namely up to m-1. 
However, the symmetric process considered here is sufficient to focus the key ideas associated with the purpose 
of the paper. 

As the stochastic process in equation (2) follows a random coefficient autoregressive process, under normality 
(non-normality) of the random errors, the maximum likelihood estimators (quasi- maximum likelihood 
estimators, QMLE) of the parameters will be consistent and asymptotically normal. It is worth emphasizing 
that the regularity conditions include invertibility, which is obvious from equation (2), as: 

௜௧ߝ  − ߶௜௧ߝ௜௧ିଵ =  ,௜௧ߟ	
 

so that the standardized shocks can be expressed in terms of the empirical data through equations (1) and (2). 

Ling and McAleer (2003) and McAleer et al. (2008) provide general proofs of the asymptotic properties of 
univariate and multivariate conditional volatility models based on satisfying the regularity conditions in 
Jeantheau (1998) for consistency, and in Theorem 4.1.3 in Amemiya (1985) for asymptotic normality. 

 

2.2 Multivariate Conditional Volatility Models 

 

The multivariate extension of the univariate ARCH and GARCH models is given in Baba et al. (1985) and 
Engle and Kroner (1995). It is useful to define the multivariate extension of the relationship between the returns 
shocks and the standardized residuals, that is, ߟ௜௧ =  ,௜௧/ඥℎ௜௧ . The multivariate extension of equation (1)ߝ
namely ݕ௧ = (௧ିଵܫ|௧ݕ)ܧ + ݉ ௧, can remain unchanged by assuming that the three components are nowߝ × 1 
vectors, where ݉ is the number of financial assets. 

Consider the vector random coefficient autoregressive process of order one, which is the multivariate extension 
of the univariate process given in equation (2): 

௧ߝ     = ௧ିଵߝ௧ߔ +  ௧,     (5)ߟ
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where ߝ௧ and ߟ௧	are ݉ × 1 vectors,  ߔ௧ is an ݉ ×݉ matrix of random coefficients,   ߔ௧~݅݅݀(0, ,௧~݅݅݀(0ߟ  ,A is positive definite ,(ܣ ݉ C is an ,(ܥ ×݉ matrix. 

Vectorization of a full matrix A to vec A can have dimension as high as ݉ଶ ×݉ଶ, whereas vectorization of a 
symmetric matrix A to vech A can have a smaller dimension of ݉(݉ + 1)/2 × ݉(݉ + 1)/2.  

In the case where A is a diagonal matrix, with ܽ௜௜ > 0 for all i = 1,…,m and | ௝ܾ௝| < 1 for all j = 1,…,m, so that 
A has dimension ݉ ×݉, McAleer et al. (2008) showed that the multivariate extension of GARCH(1,1) from 
equation (5) is given as the Diagonal BEKK model, namely:  

 ܳ௧ = ᇱܥܥ + ௧ିଵᇱߝ௧ିଵߝܣ ᇱܣ +  ᇱ,   (6)ܤ௧ିଵܳܤ

 

where A and B are both diagonal matrices. The diagonality of the positive definite matrix A is essential for 
matrix multiplication as ߝ௧ିଵߝ௧ିଵᇱ  is an ݉ ×݉ matrix; otherwise equation (6) could not be derived from the 
vector random coefficient autoregressive process in equation (5). McAleer et al. (2008) showed that the QMLE 
of the parameters of the Diagonal BEKK model were consistent and asymptotically normal, so that standard 
statistical inference on testing hypotheses is valid.  

3. FULL BEKK 

Consider element i of equation (5), which is given as: 

௜௧ߝ  = ∑ ߶௜௝௧ߝ௜௝௧ିଵ+	ߟ௜௧௠௝ୀଵ 	,  ݅ = 1, 2, … ,݉,     (7) 

 

which is not equivalent to equation (2) unless  ߶௜௝௧ = 0		∀ j ≠ i, namely parametric restrictions that are not 
consistent with Full BEKK. The stochastic equation (7) is not a random coefficient autoregressive process 
because of the presence of an additional m-1 random coefficients. Importantly, equation (7) is not invertible 
as the random processes cannot be connected to the data, which requires m equations, such as in equation (5). 
Consequently, the stochastic process underlying univariate ARCH is not a special case of that underlying 
multivariate ARCH unless  ߶௜௝௧ = 0		∀ j ≠ i.  

The same condition holds for all i = 1,…,m, which leads to the following: 

 

Proposition: For the stochastic process underlying univariate ARCH to be a special case of the stochastic 

process underlying multivariate ARCH requires the restrictions:   ߶௜௝௧ = 0		∀ j ≠ i. 

A similar condition holds for univariate GARCH and multivariate GARCH. 

The Proposition leads to the following corollaries:  
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Corollary 1: The ݉ ×݉ matrix of random coefficients, ߔ௧, is a diagonal matrix. 

 

Corollary 2: From Corollary 1, it follows that the ݉ ×݉ weight matrix of (co)variances, A, is a diagonal 
matrix, which is not consistent with Full BEKK.  

 

Corollary 3: Corollaries 1 and 2 show that a Full BEKK model, namely where there are no restrictions 
on the off-diagonal elements in ߔ௧, and hence no restrictions in the off-diagonal elements in A, is not 
possible if univariate ARCH is to be a special case of its multivariate counterpart, Full BEKK.  

 

Corollary 4: As there are no underlying regularity conditions for Full BEKK, including invertibility, the 
model cannot be estimated. Therefore, there is no likelihood function, and hence there are also no 
asymptotic properties of the QMLE of the unknown parameters in Full BEKK.  

 

Corollary 4 is consistent with the proof in McAleer et al. (2008) that the QMLE of Full BEKK has no 
asymptotic properties, whereas the QMLE of Diagonal BEKK is consistent and asymptotically normal.  

For all intents and purposes, Full BEKK does not exist, except by assumption. 

 

4. CONCLUSION 

 

The Full BEKK model in Baba et al. (1985) and Engle and Kroner (1995), who do not derive the model from 
an underlying stochastic process, was presented as equation (6), with A and B given as full matrices, with no 
restrictions on the off-diagonal elements. The Full BEKK model is estimated almost exclusively in empirical 
practice, to the exclusion of Diagonal BEKK, despite the fact that Full BEKK has no underlying stochastic 
process that leads to its specification, regularity conditions, or asymptotic properties, as shown in the 
proposition and four corollaries. 

The full BEKK model can be replaced by the triangular or Hadamard (element-by-element multiplication) 
BEKK models, with similar problems of identification and (lack of) existence. The full, triangular and 
Hadamard BEKK models cannot be derived from any known underlying stochastic processes that lead to their 
respective specifications, which means there are no regularity conditions (except by assumption) for checking 
the internal consistency of the alternative models, and consequently no valid asymptotic properties of the 
QMLE of the associated parameters (except by assumption).  

Moreover, as the number of parameters in a full BEKK model can be as much as 3m(m+1)/2, the “curse of 
dimensionality” will be likely to arise, which means that convergence of the estimation algorithm can become 
problematic and less reliable when there is a large number of parameters to be estimated. As a matter of fact, 
estimation of the full BEKK can be problematic even when m is as low as 5 financial assets. Such computational 
difficulties do not arise for the diagonal BEKK model. Convergence of the estimation algorithm is more likely 
when the number of commodities is less than 4, though this is nevertheless problematic in terms of 
interpretation. 

The purpose of the paper was to show that univariate GARCH is not a special case of multivariate GARCH, 
specifically the Full BEKK model, except under parametric restrictions on a random coefficient autoregressive 
coefficient matrix that are not consistent with Full BEKK. The paper provided the regularity conditions that 
arise from the underlying random coefficient autoregressive process, and for which the (quasi-) maximum 
likelihood estimates have valid asymptotic properties under the appropriate parametric restrictions, for the 
univariate and multivariate GARCH models. It was shown that the Full BEKK model has no underlying 
stochastic process that leads to its specification, regularity conditions, or asymptotic properties.  
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