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Abstract: Global optimization problems occur in many fields i ncluding m athematics, s tatistics, computer 
science, engineering, and economics. The purpose of a global optimization algorithm is to efficiently find an 
objective function’s global minimum. In this article we consider bound constrained global optimization, where 
the search is performed in a box, denoted Ω. The global optimization problem is deceptively simple and it 
is usually difficult to find the global mi nimum. One of  the difficulties is that there is often no way  to verify 
that a local minimum is indeed the global minimum. If the objective function is convex, the local minimum is 
also the global minimum. However, many optimization problems are not convex. Of particular interest in this 
article are objective functions that lack any special properties such as continuity, smoothness, or a Lipschitz 
constant.

The CARTopt algorithm is a stochastic algorithm for bound constrained global optimization. This algorithm 
alternates between partition and sampling phases. At each iteration, points sampled from Ω are classified low 
or high based on their objective function values. These classified points define training data that is  used to 
partition Ω in boxes using classification and regression trees (CART). The objective function is then evaluated 
at a number of points drawn from the boxes classified low and some are drawn from Ω i tself. Drawing points 
from the low boxes focuses the search in regions where the objective function is known to be low. Sampling 
Ω reduces the risk of missing the global minimum and is necessary to establish convergence. The new points 
are then added to the existing training data and the method repeats.

In this article we provide an alternative partitioning strategy for the CARTopt algorithm. Rather than using a 
CART partition at each iteration, we propose using a random forest partition. Pure CART partitions are known 
to over-fit t raining d ata a nd h ave l ow b ias a nd h igh v ariance. A  r andom f orest p artition h as l ess variance 
than a CART partition, and hence provides a more stable approximation to where the objective function is 
expected to be low. We also provide a method for sampling low regions defined by random forest partitions. 
A preliminary simulation study showed that using random forests in the CARTopt algorithm was an effective 
strategy for solving a variety of global optimization test problems. The authors are currently refining the 
method and extending the set of test problems.

Keywords: Bound constrained global optimization, CART, CARTopt, random search

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

784



B. L. Robertson et al., Stochastic global optimization using random forests

1 INTRODUCTION

The bound constrained global optimization problem is of the form

min f(x) subject to x ∈ Ω, (1)

where the search region Ω is defined by an n-dimensional box of the form

Ω = {x ∈ Rn : lj ≤ xj ≤ uj for all j = 1, . . . , n}.

The objective function f maps Ω into R ∪ {+∞} and is assumed to be lower semi-continuous. The inclusion
of {+∞}means certain constrained optimization problems can be handled using the extreme barrier approach
of Audet and Dennis (2003), which assigns the value +∞ to infeasible points or where it is otherwise not
defined.

Despite the deceptively simple form of (1), finding a global minimum is usually difficult because there is
often no way to verify that a local minimum is indeed the global minimum. A simple method for solving (1)
is called pure random search (PRS). PRS evaluates f at a number of points randomly drawn from Ω and
returns the lowest f value as an approximate global minimum. However, PRS often returns low accuracy
solutions because the probability of generating a point near a global minimizer is usually very low. A simple
modification of PRS was proposed by Appel et al. (2003), called accelerated random search (ARS). ARS
evaluates f at points drawn from a finite sequence of contracting boxes (initially Ω itself) centred on the point
with the best f value. If a point with a lower f value is found, or if the sequence is exhausted, the search
returns to Ω. This approach may appear counter intuitive, but can be very effective at refining the current
estimate of the global minimum.

Numerous deterministic and stochastic optimization methods have been proposed for bound constrained opti-
mization. Stochastic methods have an element of randomness or probability in their design and deterministic
methods do not. Examples of deterministic methods include branch-and-bound methods (c.f. Horst and Hoang
(1996)) and the DIvide a hyper-RECTangle (DIRECT) algorithm of Jones et al. (1993). Stochastic methods
that have enjoyed recent interest include simulated annealing (proposed for continuous problems by Bélisle
et al. (1993)), genetic algorithms (also called evolutionary algorithms) introduced by Holland (1975) and par-
ticle swam optimization introduced by Kennedy and Eberhart (1995). Zabinsky (2009) describes the trade-off
between deterministic and stochastic methods in terms of computational effort and the type of convergence.
Stochastic methods are typically fast, but only offer convergence to the global minimum with probability one.

This article considers the stochastic method of Robertson et al. (2013b), called CARTopt. This algorithm
alternates between partition and sampling phases. At each iteration, points sampled from Ω are classified as
low or high based on their evaluated f values. These classified points are then used as training data for a binary
classification problem (low or high) using the classification and regression trees (CART) method of Breiman
et al. (1984). CART is chosen because it partitions Ω into boxes (see Figure 1(b)), which means particular
regions of the partition can be sampled directly. Once the partition is built, f is evaluated at a number of points
drawn from the boxes classified low and some from those classified high. More points are drawn from the
low boxes to focus the search in regions where f is known to be low to increase the chance of reducing f
further. Sampling the high boxes reduces the risk of missing the global minimum and is necessary to establish
convergence. The new points are then added to the existing training data and the method repeats.

An acceptable to solution to (1) is called an essential global minimizer (EGM) (c.f. Price et al. (2012)). An
EGM, x∗, is a point for which the set

L(x∗) = {x ∈ Ω : f(x) < f(x∗)}

has Lebesgue measure zero. If f is continuous, then x∗ is also a global minimizer in the classical sense.
Under mild conditions, Robertson et al. (2013b) show that the sequence of best points generated by CARTopt
converges to an EGM of f with probability one.

In this article, we propose using a random forest partition in the CARTopt algorithm instead of using a CART
partition. In Section 2, CARTopt’s training data and CART partition are explained. Partitions built using
random forests are discussed in Section 3 and a way to sample from these partitions is proposed in Section 4.
Concluding remarks are given in Section 5.
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2 CARTOPT PARTITION

CARTopt’s partition phase divides Ω into low and high boxes using CART and binary classified (low or high)
training data

D = {xi, yi : xi ∈ Ω and i = 1, 2, . . . , N},

where N is the number of training observations and

yi =

{
low if f(xi) < fc

high otherwise.

Robertson et al. (2013b) suggest choosing fc so that a relatively small number of points are classified low at
each iteration. This choice promotes clustering in D, particularly in areas where f is relatively low. In this
article we classify the 20 points in D with the least f values low.

CART forms its partition on Ω using a greedy recursive binary splitting strategy. Initially, Ω1 = Ω is split into
two boxes, Ω2 and Ω3, by considering a series of hyperplane splits of the form

xj =
1

2
(xij + xkj)) such that yi = low and yk = high,

where xij denotes the jth coordinate of xi ∈ Ω1. The method exhaustively searches over each coordinate to
find the hyperplane split that maximises

∆ = i(Ω1)− |Ω2|
|Ω1|

i(Ω2)− |Ω3|
|Ω1|

i(Ω3), (2)

where |Ωj | is number of points in Ωj and i(Ωj) is the impurity of box Ωj . In this article we measure impurity
using the Gini index

i(Ωj) = 2
low j

|Ωj |

(
1− low j

|Ωj |

)
,

where low j is the number of low points in Ωj . The method then repeats on each box until all boxes are pure
— containing either low or high points, but not both. An example of a CART partition is given in Figure 1(b).

To potentially simplify the CART partition, Robertson et al. (2013a) reflect the training data using a House-
holder matrix

H = I − 2
(e1 − v)(e1 − v)T

‖e1 − v‖2
,

where I is the identity matrix, e1 is the first column of I and v is the dominant eigenvector of the covariance
matrix for the low points. Pre-multiplying each training observation withH aligns CART splits with respect to
v rather than the coordinate axes. A CART partition using reflected training data is illustrated in Figure 1(c).
This is an effective strategy for simplifying CART partitions and its effectiveness has been demonstrated by
Wickramarachchi et al. (2016) for a number of classification problems.

To increase the performance of CARTopt, Robertson et al. (2013a) perform three post-partition modifications
on the CART partition. The first modification stops low boxes from becoming numerically degenerate by
forcing a minimum box diameter. The second potentially reduces the size of low boxes that share at least one
face with Ω. This modification requires at least one additional f evaluation for each low box that is considered.
The third modification replaces singleton low boxes (boxes containing one low point) with hypercubes whose
size is set relative to the size of the other low boxes. This modification can be seen in Figure 1(b) where five
singleton low boxes have been replaced with square boxes.

3 RANDOM FOREST PARTITIONS

In this section, we propose using a random forest partition in the CARTopt algorithm. The purpose of CAR-
Topt’s partition phase is to define where f is expected to be low using a partition that can be efficiently
sampled. A CART partition is efficient to sample, but forcing each box to be pure over-fits the training data.
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These pure CART partitions are known to have low bias and high variance (c.f. Hastie et al. (2013)), meaning
small changes in the training observations can produce substantial changes in the partition.

To reduce over-fitting and the variance of CART partitions, bootstrap aggregation (bagging) can be used. In
bagging, B CART partitions are built using bootstrapped training data and classifications are made using a
majority vote. The bias of the bagged partition is the same as an individual CART partition, but the variance
of the bagged partition is typically less than an individual CART partition. Breiman (2001) introduced random
forests (Algorithm 1) in an attempt to improve the variance reduction further by decorrelating the partitions.
This is achieved by randomly choosing m dimensions for splitting each impure box while building the par-
tition (line 7 of Algorithm 1). Setting m = n is bagging and choosing 1 ≤ m < n attempts to decorrelate
the partitions. Here we choose m = d

√
ne following from Breiman (2001), where d·e is the ceiling func-

tion. CART partitions can be simplified by using the Householder reflected training data, particularity in the
neighbourhood of a global minimizer (see Figure 1(c)). Therefore, half of the partitions in the forest are built
using bootstrapped samples from Householder reflectedD. The remaining partitions use bootstrapped samples
from D.

Algorithm 1 Random Forest Partition
1: Input: N training observations D = {xi, yi}Ni=1.
2: for k = b to B do
3: Draw a bootstrap sample of size N from D if k is even. Otherwise, bootstrap from reflected D.
4: Form a random forest partition Tb to the bootstrapped data, by recursively repeating
5: the following steps for each impure box in the partition.
6: repeat
7: Select m = d

√
ne dimensions at random from the n dimensions.

8: Divide the box using the split that maximises (2) from among the m dimensions.
9: until all boxes are pure

10: end for
11: Output: The ensemble of partitions {Tb}Bb=1.

Random forest classifiers typically classify observations using a majority vote. That is, if at least B/2 of the
partitions classify an x ∈ Ω low, then x is classified low. However, we have imbalanced training data (many
high points and few low points) and we are primarily interested in defining where f is expected to be low.
Therefore, rather than using a majority vote, we classify x low if at least 1 ≤ α ≤ B/2 partitions classify
x low. In this article we choose B = 20 (the number of low points drawn) and α = 3. We recommend
relatively low α values to reduce the risk of misclassifying promising low regions. An example of a random
forest partition with B = 20 and α = 3 is shown in Figure 1(e).

Two post-partitions modifications from Robertson et al. (2013a) are also applied to the random forest partition.
We force a minimum low box diameter to stop these boxes becoming numerically degenerate and replace
singleton low boxes with hypercubes. These modifications are simple to implement, do not require additional
f evaluations, and are not necessarily implemented at each iteration, only when required.

4 SAMPLING FROM RANDOM FORESTS

CARTopt’s sampling phase draws points from the low and high boxes in the partition on Ω. Hence, to imple-
ment CARTopt with the random forest partition, we need to draw observations from the random forest. Rather
than sampling the high boxes directly, Robertson et al. (2013b) simplify the algorithm by sampling Ω instead.
Sampling the high boxes (or Ω) is necessary to establish convergence and sampling the low boxes focuses the
search where f is expected to be low. This simplified sampling approach is used in this article.

The low boxes in the random forest partition are sampled using a three-phase approach. First, randomly select
one partition from the random forest. A low box is then randomly selected from the partition using selection
probabilities proportional to the relative size of each low box. A point x is then randomly drawn from the
selected box. If x ∈ Ω and at least α partitions in the random forest classify x low, it is accepted. Otherwise
the point is rejected. In either case, the method repeats until the required batch size is achieved. A sample
drawn from the random forest partition in Figure 1(e) is shown Figure 1(f), where the search has been focused
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Figure 1. (a) Contours of f = 2|2x1 − 2x2| + (2x1 − 1)(2x2 − 1) on Ω = [0, 1]2 and 125 training data points, 
where 20 points were classified low (red) and 105 points high (black). (b) Low boxes in the CARTopt partition 

on Ω using the training data. (c) Low boxes in the CARTopt partition on Ω using Householder reflected 
training data. (d) Low boxes in a random forest partition on Ω using B = 20 trees. (e) The intersection of low 
boxes from at least α = 3 trees in the random forest. (f) A new CARTopt sample of 25 points, with 20 points 

drawn from the random forest partition in (e) and 5 points drawn from Ω.

where f was expected to be low.

The distribution of points drawn using the method above depends on the overlap of the low regions from each 
partition. If the low regions in each partition are similar, the points will be approximately uniformly distributed 
over the intersection of all low boxes (see Figure 1(f)). Otherwise, the point density will tend to be greater 
where the low regions have greatest overlap. The regions of greatest overlap are where the random forest is
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most confident that f is relatively low, so increasing the sample density here is advantageous.

5 DISCUSSION

In this article we provide an alternative partitioning strategy for the CARTopt algorithm. Rather than using a
CART partition at each iteration, we suggest using a random forest partition. Pure CART partitions are known
to over-fit training data and have low bias and high variance. A random forest partition has less variance than
a CART partition and hence, provides a more stable approximation to where the objective function is expected
to be low. Sample points can then be drawn from these low regions using the random forest. The random
forest partition also simplifies the original CARTopt algorithm by removing a post-partition modification that
required additional f evaluations. Convergence to an essential global minimizer of f can be demonstrated with
small changes to the results of Robertson et al. (2013b). A preliminary simulation study showed that using
random forests in the CARTopt algorithm was an effective strategy for solving a variety of global optimization
test problems. The authors are currently refining the method and extending the set of test problems.
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