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Abstract: The transport sector is accounts for 14% of global greenhouse gas emissions (Sims, et al., 2014) 
but is also an essential service underpinning economic growth and societal well-being. The transport sector 
will therefore need to maintain or enhance mobility while transitioning to lower emission modes, fuels and 
technologies. Globally the road sector is the largest source (72%) of transport emissions. Most road vehicle 
fuel efficiency improvements reduce the total cost of travel and therefore represent a negative abatement cost. 
However, other abatement opportunities such as vehicle electrification and other alternative fuels involve 
switching vehicle technologies, with emerging technologies initially having higher costs than the existing more 
emissions-intensive alternative. Uptake of these technologies helps reduce their costs through ‘learning by 
doing’, where cost reduces as uptake increases. Economies of scale in manufacturing of these vehicles will 
also reduce their cost. To explore the impacts of policy and economic drivers on the transport mix, CSIRO has 
developed a partial equilibrium model of the global transport sector, GALLM-T, which explicitly includes 
learning by doing.  

The model uses experience curves to endogenously determine the future cost and uptake of fuel conversion 
technologies related to transport. GALLM-T features 13 regions, 17 fuel conversion technologies, 16 fuels, 5 
passenger modes and 7 modes of freight transport. Technologies subject to learning include batteries in electric 
vehicles and fuel cells in fuel cell vehicles. Component learning is included where technology components 
have shared learning among technologies that have those components. For example, the carbon capture and 
storage (CCS) component in fuel production facilities is a component that is shared among all facilities that 
include CCS technologies.  

The nonlinear experience curves have been approximated as piecewise-linear functions, and the model’s 
`selection’ of which linear piece it is on at each point in time forms the core integer part of GALLM-T. 
GALLM-T is solved in GAMS as a mixed integer linear program. 

This paper introduces the model and provides results from its application in the second of CSIRO’s National 
Outlook projections, a project which explores different futures for Australia, within the global context, through 
quantitative scenario analysis. In the Outlook, global transport, electricity, land use and economic models are 
linked to generate a consistent set of inputs for national models that explore Australian outcomes in more detail.  

Future demand for transport has been sourced from linking GALLM-T with a global general equilibrium model 
(GTAP.ME-3). GALLM-T has also been linked with CSIRO’s GALLM-E model, which is used to determine 
the future cost and uptake of electricity generation technologies. Both GALLM-E and GALLM-T have the 
capacity to project uptake of batteries and fuel cells. Where this occurs in both models, the combined impact 
pushes these technologies down the experience curves faster, accelerating the rate of cost reduction.  

This paper compares results from scenarios with moderate and strong global climate action. Illustrative results 
show a more than 60% share of electric drive trains in the total stock of passenger vehicles and 70% in light 
commercial vehicles by 2050 under both carbon price scenarios ($31/tCO2e and $65/tCO2e by 2050). There is 
a limited uptake of fuel cell drive trains in cars and light commercial vehicles. Low coal prices also lead to the 
construction of coal to liquids plants (with and without CCS), mainly providing fuel for the freight sector which 
continues to have a high share of diesel engines. There is a greater share of production of biofuels, which 
displaces conventional and alternative fossil fuels under the higher carbon price scenario from the year 2040 
onwards.  
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1. INTRODUCTION 

The transport sector accounts for 14% of global greenhouse gas emissions (Sims, et al., 2014) but is also an 
essential service underpinning economic growth and societal well-being. The transport sector will therefore 
need to maintain or enhance mobility while transitioning to lower emission modes, fuels and technologies as 
we move into the future. The road sector is the largest source of transport emissions (72%) (Sims, et al., 2014). 
Most road vehicle fuel efficiency improvements reduce the total cost of travel and therefore represent a negative 
abatement cost. However, other abatement opportunities such as vehicle electrification and other alternative 
fuels involve switching vehicle technologies, with emerging technologies initially having higher costs than the 
existing more emissions-intensive alternative. The relative costs of different emissions reduction options, and 
how these might change over time, are of interest to policy makers and businesses. 

This paper describes a model for simultaneously projecting changes in transport technology costs and their 
adoption using a regionally disaggregated global model of the transport sector which includes endogenous 
technology cost reduction curves. The model, GALLM-T, is applied to global greenhouse gas abatement 
scenarios and results for uptake of alternative fuel and vehicle technologies are described. Model inputs are 
included from other global model frameworks for transport demand and biomass feedstock availability. 

1.1. Fuel conversion technologies  

Research, development and deployment (RD&D) is ongoing into alternative fuel technologies, such as biofuel 
refineries. While first generation biofuels can be produced using food sources (corn, wheat, seeds, etc), second 
and third generation biofuels can be produced using lignocellulosic feedstocks such as residues, woody weeds 
and pulp logs. Biofuels are considered to be the only way for air travel to be an emission-free mode. Alternative 
fossil fuel production technologies are also available, such as coal-to-liquids and gas-to-liquids, which may be 
useful under high oil prices relative to coal and gas, particularly in countries with abundant supply of these 
resources. These synthetic fossil petroleum and diesel technologies are however highly emissions-intensive, 
and would need to be coupled with carbon capture and storage (CCS) to reduce emissions. Concentrating solar 
thermal (CST) energy can be used in these processes to provide the heat required for reaction, thus reducing 
the fossil fuel footprint.  

Alternative vehicle technologies include battery electric vehicles and fuel cell electric vehicles. The majority 
of projections comparing the future cost of battery electric and fuel cell vehicles have fuel cell vehicles costing 
more (Offer, Howey, Contestabile, R, & Brandon, 2010) (Stephen & Eaves, 2004). However, fuel cells have 
the advantage of fast refueling. They can also travel longer distances between refuels and can be used in all 
vehicle types, but particularly in heavy commercial vehicles which are not suited to full electrification 
(Thomas, 2009). Heavy commercial vehicles have the option of using liquefied natural gas (LNG) or 
compressed natural gas (CNG) but this does require engine modifications.  

There is a great deal of uncertainty around the future cost of alternative vehicle and fuel technologies. Given 
the recent cost decreases in lithium-ion battery technologies, some project that battery electric vehicles will 
have the same upfront cost as current internal combustion engine designs as early as 2018 (Campbell, 2017) 
whereas others are less optimistic and suggest that this cross-over point will happen between 2025 and 2029 
(BNEF , 2017). Low world oil prices, which fell to $50-60/bbl in the last two years from over $100/bbl in 2014 
(IEA, 2016), support internal combustion engine vehicles having low running costs, which may delay the 
uptake of battery electric and fuel cell vehicles. To explore the potential range of future costs of all of these 
technologies, GALLM-T has been formulated using experience curves to simultaneously project their cost and 
uptake under a wide range of scenarios. 

1.2. Technology Learning 

Uptake of these technologies help reduce their costs through ‘learning-by-doing’, where cost reduces as uptake 
increases. Cost reductions due to learning-by-doing have been observed since the 1930s in various technologies 
and processes (McDonald & Schrattenholzer, 2001). Learning-by-doing is normally shown as the ‘learning’ or 
‘experience’ curve, where the log of unit cost is plotted against the log of cumulative sales/capacity/uptake, 
and the slope of the curve is the negative of the learning index b. The equation given by: ܥܫ = 	 	ܥܫ 	× 	ቀ బቁି ,     or equivalently     log(ܥܫ) = log(	ܥܫ	) 	− ܾ(log(ܥܥ) − log(ܥܥ)) (1) 

where IC is the unit investment cost at CC cumulative capacity and IC0 is the cost of the first unit at CC0 
cumulative capacity. The learning index b satisfies 0 < b < 1 and it determines the learning rate 
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ܴܮ                                                                   = 100	 ×	(1 −	2ି)				 (2) 

(typically quoted as a percentage ranging from 0 to 50%) and the progress ratio ܴܲ = 100 −  All three .ܴܮ
quantities express a measure of the decline in unit cost with learning or experience. 

Therefore, for each doubling in cumulative capacity of a technology, its investment cost will fall by the learning 
rate (Hayward & Graham, 2013).  

Emerging technologies have a higher learning rate than more mature technologies. Typically, a 20-15% 
learning rate has been observed during the early stages of a technology’s development, which reduce to 15-
10% by the time the technology has a market share of approximately 5% (Grübler, Nakićenović, & Victor, 
1999). At this stage the technology is considered to be intermediate. Mature technologies have a 5-0% learning 
rate.  

Technologies are often a combination of several components, which could be at different stages of development 
and thus have different rates of learning. Efficient scale manufacturing is very important in the vehicle industry 
and may be a significant proportion of cost reductions (Brinsmead, Graham, Hayward, Ratnam, & Reedman, 
2015).  

It is also important to identify where cost reductions are occurring to correctly attribute local versus global 
learning. Technologies that learn on a global scale, such as coal or gas to liquids plants, will have a different 
level of uptake by country to differences in local installation costs.  

2. FORMULATING EXPERIENCE CURVE APPROXIMATIONS 

A mixed-integer programming (MIP) approach is described to approximate the nonlinear experience curves by 
using linear constraints involving continuous and binary variables. 

Modelling a nonlinear function by approximating it with a piecewise-linear function requires specifying three 
key ingredients: (i) the interval over which to approximate the function; (ii) where to place the breakpoints of 
the segments (this implies the slopes of the linear pieces if we assume continuity); and (iii) the method to decide 
which linear piece is `selected' or 'active' in the model in any given state. The first is determined by the 
modeller's knowledge of the problem and the data provided in the problem specification. The method described 
by de Boor (de Boor, 1973)  was used to determine (ii). In this method, a step function approximation is made 
to the experience curves. The optimal choice of breakpoints can be shown to be those where the height of each 
step is the same. An example of this is shown in Figure 1.  

 

Figure 1. Step function approximation to a unit experience curve with the steps at equal heights 

While the best quantity to approximate is the unit cost function, an approximation to the cumulative cost 
function is used: the integral of the unit cost function (Kypreos, Barreto, Capros, & Messner, 2000). The 
approximation has the property that the slopes of the approximating lines are optimally as close as possible to 
the unit cost over each the linear segment.  

In relation to (iii), a number of MIP models have been proposed for encoding piecewise-linear functions 
(Croxton, Gendron, & Magnanti, 2003) (Vielma, Ahmed, & Nemhauser, 2010). It was found that the so-called 
incremental model (Rebennack, 2016) was most suited for the type of experience curves employed in GALLM-
T since the problem could be decomposed by time period and relate decisions made in prior time periods in a 
direct way to those in later time periods. 
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3. GALLM-T 

Using the principles of technology learning, CSIRO has developed GALLM-T. It is used specifically to project 
the future cost and uptake of fuel conversion and alternative vehicle technologies, in different policy 
environments out to the year 2060. It has: 

• 13 regions (Africa, Australia, China, Eastern Europe, Western Europe, Former Soviet Union, India, Japan, 
Latin America, Middle East, North America, OECD Pacific, Rest of Asia and Pacific);  

• 17 fuel conversion technologies (batteries, fuel cells, anaerobic digestion, 1st generation biodiesel, hydro-
processed esters and fatty acids (HEFA) process for jet fuel, 1st generation ethanol, 2nd-3rd generation 
ethanol, Biomass-to-Liquids (BTL) via Fisher-Tropsch  (FT) synthesis route or methanol route, Fast 
pyrolysis of lignocellulosic feedstocks, Hydrothermal liquefaction of lignocellulosic feedstocks, Coal-to-
Liquids (CTL) via Fischer-Tropsch (FT) or methanol route, CTL with Carbon Capture and Storage (CCS) 
via FT or methanol route, and Gas-to-Liquids (GTL) via FT or methanol route);  

• 14 types of fuels (petrol, diesel, Liquefied Petroleum Gas (LPG), Liquefied Natural Gas/Compressed 
Natural Gas (LNG/CNG), biogas, ethanol, biodiesel, electricity, hydrogen, bunker, jet fuel, bio-petrol, bio-
jet and bio-LPG); 

• 6 road forms of transport (car, 2-3 wheeler, bus, light (LCV), medium (MCV) and heavy (HCV) 
commercial vehicle) and 6 forms of non-road transport (passenger rail, freight rail, passenger air travel, 
air freight, inland and coastal shipping, and international shipping). 

In GALLM-T all technologies are subject to global learning except mature technologies (e.g. anaerobic 
digestion, and 1st generation biofuels) which are assumed to have 0.5% cost reduction per year. The learning 
rates of other components depend on their level of maturity (Grübler, Nakićenović, & Victor, 1999). Some 
components of technologies have a 5% learning rate (e.g. fuel synthesis in BTL, CTL and GTL), 10% learning 
rate (e.g. 2nd-3rd generation ethanol, BTL and CTL with CCS preparation), 15% learning rate (e.g. battery) or 
20% learning rate (e.g. fuel cell). Local learning is applied to a subset of technologies (e.g. 2nd-3rd generation 
ethanol, BTL and CTL technologies).      

Future demand for transport has been sourced from linking GALLM-T with a global general equilibrium model 
(GTAP-ME.3) (Smith, et al., 2017). GALLM-T has also been linked with CSIRO’s GALLM-E model, which 
is used to determine the future cost and uptake of electricity generation technologies (Hayward & Graham, 
2013). Both GALLM-E and GALLM-T can project uptake of batteries and fuel cells. Where this occurs in both 
models, the combined impact pushes these technologies down the experience curves faster, accelerating the 
rate of cost reduction.  

Fossil fuel and carbon price trajectories have been sourced from the International Energy Agency (IEA) (IEA, 
2016). Biomass-based feedstock prices and upper limits for liquid fuels from 1st generation technologies have 
been sourced from GLOBIOM (Global Biosphere Management Model), which has also been linked with 
GALLM-T. GLOBIOM models competition for land use between the agricultural, bioenergy and forestry 
sectors (Havlik, et al., 2011).  

3.1. Scenarios 

Two scenarios have been modelled corresponding to: (i) Scenario 1 - a high carbon price and (ii) Scenario 2 - 
a low carbon price. Each scenario also features unique fossil fuel and feedstock prices and transport demand. 
These parameters differ over different regions, based on their resources, GHG emission policies, population 
and GDP.  

4. RESULTS 

4.1. Scenario 1 

The global total vehicle-km (vkm) share of passenger car demand met by each engine type is shown in Figure 
2. It can be seen that petrol-based ICE vehicles dominate the car until the 2040s, when electric vehicles (EVs) 
become the dominant engine for passenger cars. ICEs fueled by biofuel blends such as ethanol continue to be 
used globally over the whole of the projected time period.  

While EVs dominate vkm travelled for cars, diesel remains the dominant fuel for freight transport using MCVs, 
HCVs, rail and shipping. This can be seen in Figure 3 where demand for diesel is met by both conventional 
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diesel and alternative fossil diesel and which is sourced from CTL with and without CCS technologies. 
Consumption of ethanol as a 10% or 85% blend with petrol, biopetrol and alternative fossil petrol is also high. 
These fuels are used in cars, 2-3 wheelers, buses and LCVs. Consumption of electricity increases to 2060 given 
its use in EVs and passenger trains.  

 

Figure 2. Projected global billion vkm travelled per engine type for cars to the year 2060 under Scenario 1 

 

Figure 3. Projected global fuel consumption for all modes of transport to the year 2060 under Scenario 1 

4.2. Scenario 2 

The projected global total passenger car vkm demand met by each engine type is not shown as there is no 
difference between this and the result under Scenario 1, therefore a higher carbon price is not a driver of 
alternative engine uptake across this interval. The projected global fuel consumption is shown in Figure 4. 
This is also similar to the result under Scenario 1, however, in this case biofuel consumption is reduced, 
particularly from the year 2050 onwards. This can also be seen on examination of Table 1, which compares 
the scenarios under broad fuel categories in the year 2060. It is also worth noting that there is greater 
consumption of fossil fuels under Scenario 2 and that the consumption of electricity is very similar.  
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Figure 4. Projected global fuel consumption for all modes of transport to the year 2060 under Scenario 2 

Table 1. Projected year 2060 global fuel consumption for broad fuel categories 

Fuel category Scenario 1 (PJ/year) Scenario 2 (PJ/year) 

Fossil fuel based 103,550 121,870 

Electricity 24,340 24,730 

Hydrogen 0.85 0.03 

Biofuel 63,170 42,870 

 

5. CONCLUSION 

By including the principle of ‘learning-by-doing’, GALLM-T has been shown to simultaneously project the 
cost and uptake of alternative transport technologies. As far as the authors are aware, this is the only model of 
its kind which includes experience curves for transport technologies.  

GALLM-T projects that transformation will occur in the transport sector even under a low carbon price 
scenario. The transformation is driven by the lower cost of electric vehicles. In addition, there is sufficient 
lignocellulosic biomass available for production of biofuels, most notably ethanol, which reduces emissions 
from petrol-based ICEs. However, the use of alternative fossil-based fuels is projected to expand, which 
increase emissions when CCS is not used in these fuel conversion technologies. This is in contrast with IEA 
projections under their New Policies scenario which have the share of oil-based fuels remaining high (85%), 
followed by other fuels at 7%, biofuels at 6% and electricity at 4% only by 2040 (IEA, 2016).  

REFERENCES 

BNEF . (2017). Electric vehicle outlook 2017. Retrieved from Bloomberg New Energy Finance: 
http://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF_EVO_2017_ExecutiveSummary.pdf 

Brinsmead, T. S., Graham, P., Hayward, J., Ratnam, E. L., & Reedman, L. (2015). Future Energy Storage 
Trends: An Assessment of the Economic Viability, Potential Uptake and Impacts of Electrical Energy 
Storage on the NEM 2015-2035. CSIRO for AEMC. 

Campbell, P. (2017, May 20). Electric car costs forecast to hit parity with petrol vehicles. Retrieved from 
Financial Times: https://www.ft.com/content/6e475f18-3c85-11e7-ac89-b01cc67cfeec?mhq5j=e2 

Croxton, K., Gendron, B., & Magnanti, T. (2003). A comparison of mixed-integer programming models for 
nonconvex piecewise linear cost minimization problems. Management Science, 49(9), 1268-1273. 

de Boor, C. (1973). Good approximation by splines with variable knots. In ISNM, Spline functions and 
approximation theory (Vol. 21, pp. 57-72). Basel: Birkhauser-Verlag. 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

20
15

20
18

20
21

20
24

20
27

20
30

20
33

20
36

20
39

20
42

20
45

20
48

20
51

20
54

20
57

20
60

Pr
oj

ec
te

d 
fu

el
 co

ns
um

pt
io

n 
(P

J/
ye

ar
)

Year

petrol
jet
hydrogen
ethanol
Electricity
diesel
bunker
biopetrol
biojet
Biogas
biodiesel
Alt-fossil-petrol
Alt-fossil-jet
Alt-fossil-diesel

823



Hayward et al., A Global and Local Learning Model of Transport (GALLM-T) 

Grübler, A., Nakićenović, N., & Victor, D. (1999). Dynamics of energy technologies and global change. 
Energy Policy, 27, 247-280. 

Havlik, P., Schneider, U., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., & Obersteiner, M. (2011). Global 
land-use implications of first and second generation biofuels targets. Energy Policy, 39(10), 5690-
5702. 

Hayward, J., & Graham, P. (2013). A global and local endogenous experience curve model for projecting future 
uptake and cost of electricity generation technologies. Energy Economics, 537-548. 

IEA. (2016). World Energy Outlook . Paris, France: OECD. 

Kypreos, S., Barreto, L., Capros, P., & Messner, S. (2000). ERIS: A model prototype with endogenous 
technological change. Int. J. Global Energy Issues, 14(1-4), 374-397. 

McDonald, A., & Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29, 255-
261. 

Offer, G., Howey, D., Contestabile, M., R, C., & Brandon, N. (2010). Compartive analysis of battery electric, 
hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 
38(1), 24-29. 

Rebennack, S. (2016). Computing tight bounds via piecewise linear functions through the example of circle 
cutting problems. Mathematical Methods of Operations Research, 1-55. 

Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núňez, D'Agosto, M., Dimitriu, D., . . . Tiwari, G. (2014). Transport. 
In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, . . . J. Minx, 
Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom 
and New York, NY, USA: Cambridge University Press. 

Smith, K., Adams, P., Baynes, T., Brinsmead, T., Hatfield-Dodds, S., Ferrier, S., . . . Nolan, M. (2017). 
Assessing risks and opportunities for Australia's future in a novel integrated assessment framework: 
the GNOME.3 suite for the Australian National Outlook. MODSIM. 

Stephen, E., & Eaves, J. (2004, May 3). A cost comparison of fuel-cell and battery electric vehicles. Journal 
of Power Sources, 130(1-2), 208-212. 

Thomas, C. (2009). Fuel cell and battery electric vehicles compared. International Journal of Hydrogen 
Energy, 34(15), 6005-6020. 

Vielma, J., Ahmed, S., & Nemhauser, G. (2010). Mixed-integer models for nonseparable piecewise-linear 
optimization: unifying framework and extensions. Operations Research, 58(2), 303-315. 

 

824




