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Abstract: Data-driven hydrological predictions based on supervised classification have recently gained 
momentum. This technique supports the classification of waterbodies and flood events that occur at different 
watersheds, predictions of a class of a hydrological event, e.g., ‘high-’ or ‘low-flow’, as opposed to forecasting 
magnitudes of streamflow characteristics generated by ANNs, regression models or other modelling tools. 
Flood management teams declare a state of emergency and/or take mitigation measures based on a set of 
business rules reflecting water level exceedance of an established threshold. Therefore, predicting a class of a 
hydrological event, e.g. ‘flood’ or ‘no-flood’, carries even more important information for operational flood 
managers than projected magnitudes of streamflow characteristics. When predictions of a class of an event are 
obtained based on data available in real-time, they can be easily deployed in flood management. Scientific 
literature has demonstrated the usefulness of various classification algorithms (inducers) in applied hydrology. 
The performance of these inducers, however, deviated notably on different data sets. To alleviate these 
deviations and generate forecasts with reduced generalization error, an ensemble of classifier can be 
constructed.  

One of the important steps in developing an ensemble of classifiers is identifying the approach to aggregate 
individual predictions into a final judgement. The current study investigates the effect of various weighting 
schemes on the accuracy of the generated forecasts of hydrological events. The predictors were developed 
using C4.5, CART, REPTree, NBTree, Ridor, JRip, and Random Forest inducers trained on data collected by 
stream and rain gauges located on a small highly urbanized watershed during two hydrologically distinct years. 
The data sets were first transformed into time series of various granularity from 15 minutes to 60 minutes. 
Time series of the same granularity and corresponding to the same year were converted to an augmented phase 
space providing datasets for training and testing developed predictors. Ensembles were constructed using five 
combination rules: majority vote, maximum probability, minimum probability, average probability, and 
product of probabilities. The ensemble’s generalization error was estimated using two measures: recall and F-
score.  

Combining the results of predictors constructed via training of individual inducers allows to develop a more 
robust model generating reliable predictions. However, the estimates of the ensemble’s generalization error 
vary up to 28% depending on the combination rule used to aggregate individual predictions into the final 
judgement. The issue of selecting a combination rule which is the most suitable for an application domain has 
both theoretical importance and practical significance. Computational experiments revealed that the classifier 
constructed with the minimum probability combination rule outperformed the others. It consistently delivered 
the most accurate results for all investigated data sets and all lead time intervals. The performance of classifiers 
utilizing the maximum probability rule on all data sets was the weakest, contrasting to its interpretation as a 
rule which identifies a classifier with the highest estimated confidence. Although the results of data-driven 
analysis are site-specific, they suggest further investigation of this rule, including theoretical considerations 
and application of the rule to data sets from other watersheds. Another combination rule which should not be 
easily discarded for the given problem domain, is the majority vote. 
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1. INTRODUCTION 

The supervised machine learning approach has been employed in hydrological modelling for several decades. 
Starting from regression problems where relationships between factors affecting natural conditions of a 
watershed and targeted hydrological characteristics of a corresponding waterbody were described as a black 
box, the approach delivered a large variety of artificial neural networks (ANNs) applied to different problems 
of water resources assessment and management. This artificial intelligence technique became very popular, so 
the American Society of Civil Engineering (ASCE) summarized the experience and provided recommendations 
on ANN applications in two papers ASCE (2000a) and ASCE (2000b). Since then, ANNs have evolved 
dramatically into Bayesian artificial neural networks (e.g., Humphrey et al., 2016), neuro-fuzzy systems 
(Nayak et al., 2005), or deep learning tools (e.g., Li et al., 2016) supporting stream-flow predictions of various 
temporal scales. Regression methods were incorporated into decision trees, e.g., M5 algorithms (Quinlan, 
1992), and when applied to large volumes of data, became one of the branches of supervised machine learning. 
There is a growing number of publications on the application of other branches of artificial intelligence to 
environmental problems and, particularly, to the issues related to water resources management. The 
comparison of machine learning algorithms with respect to their hydrological applications was undertaken by 
Londhe and Charhae (2010) and Spate et al. (2003).  

Data-driven hydrological analysis based on supervised classification have recently gained momentum. The 
technique supports the classification of waterbodies (Hewett, 2003) and flood events that occur at different 
watersheds (Sikorska et al., 2015), predictions of a class of a hydrological event, e.g., ‘high-’ or ‘low-flow’, as 
opposed to forecasting magnitudes of streamflow characteristics generated by ANNs regression models or 
other modelling tools (Damle and Yalcin, 2007). McColloch et al. (2008) and Erechtchoukova et al. (2016) 
proved usefulness of various classification algorithms (inducers) in hydrological predictions. At the same time, 
the studies demonstrated the compliance with the ‘no free lunch’ theorem (Wolpert, 1996), which states that 
there is no a priori superiority of the inducer, even for the same problem domain. The performance of the 
inducers deviated notably on different data sets. To alleviate these deviations and generate forecasts with 
reduced generalization error, an ensemble of classifier can be constructed.  

Optiz and Maclin (1999) and, more recently, Rokach (2010) provided extensive reviews of ensemble methods, 
suggesting where application of ensembles can be beneficial and offering general guidance on ensemble 
development. The main selection criteria for ensemble members can be summarized in the following way: (1) 
to preserve the ‘diversity of opinion’; (2) to maintain independence of individual members; (3) to allow 
classifiers to draw conclusions using specific knowledge (i.e., decentralization); and (4) to aggregate private 
judgments into the  final decision (Rokach, 2010). There are two general ways to combine the results of 
individual predictors into a final judgement: weighting schemes and meta-learning techniques. Meta-learning 
methods train inducers on the results of classifiers constructed using data sets. Weighting methods assign 
fractions to each member’s opinion which are used to calculate the final decision. The weights can be static 
and assigned a priori or can be calculated dynamically depending on the classifier’s performance. 

The study was focused on comparison of weighting schemes with the goal to determine the most suitable 
combination rule for short-term prediction of high-flow events in small watersheds. The individual classifiers 
were constructed by training supervised classification algorithms on the augmented phase space following 
formal problem articulation, and the framework for data pre-processing was described earlier (Erechtchoukova 
et al., 2016). The paper presents the summary of the problem articulation and framework for reconstruction of 
the phase space, sets of computational experiments conducted and the results of the comparison of investigated 
combination rules. 

2. MODELLING TOOL 

To declare a state of emergency, flood management teams base their operational decisions regarding a flood 
event on a set of business rules reflecting water level exceedance of an established threshold. Therefore, 
predicting a class of a hydrological event, e.g. ‘flood’ or ‘no-flood’, carries even more important information 
for operational flood managers than projected magnitudes of streamflow characteristics. When predictions of 
a class of an event are obtained based on data available in real-time, they can be easily deployed in flood 
management. The formal articulation of the problem of a hydrological event prediction using supervised 
classification has been presented in (Erechtchoukova et al., 2016). The predictors have been developed using 
various inducers and their ensemble trained on data collected by stream and rain gauges located on a watershed 
of interest. Such data are usually collected automatically with high frequencies of observations. To apply 
classification algorithms, the time series generated by stream and rain gauges must be transformed into a phase 
space augmented by class labels corresponding to the class of an event occurring at the cross-section of interest. 
Given that the near future hydrological conditions at the cross-section of interest depend on the current stream 
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state, upstream hydrological conditions and overall watershed meteorological conditions, the phase space has 
been re-constructed from time series obtained by all meteorological observation sites located on a watershed 
as well as hydrological sites located upstream of a cross-section of interest. In addition to that, a current state 
of a stream is predetermined by the conditions in the recent past. To account for this, a time delay embedding 
approach (Povinelli and Feng, 2003) was applied.   

In this study, seven inducers were used to investigate the effect of a combination rule on the uncertainty of 
short-term predictions of flood-events in a small highly urbanized watershed. The set of inducers contained 
well-known machine learning algorithms: C4.5, CART, REPTree, NBTree, Ridor, JRip, and Random Forest 
implemented in WEKA 3.6.14 software package (Hall et al., 2009). The details of their implementation can be 
found in the corresponding manual. All individual classifiers produced class labels representing categorical 
values which can be interpreted as a type of a hydrological event, e.g., a ‘high-flow’ or ‘low-flow’ event.  

3. COMBINATION RULES 

It is obvious that an ensemble of classifiers performs better if its members disagree on some elements of a 
phase space. One of the most popular combination rules is the majority vote where the final judgement 
corresponds to the label most frequently assigned to a classified element of the phase space:  
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where cl is the class label,  is the event characterization function ascertaining the class label assigned to 

the tuple of input variables zt by  j-th classifier and g is an indicator function (Rokach, 2010).  

Previous studies of the above inducers showed that they produce classifiers which perform differently on the 
data sets reconstructed from hydro-meteorological data. Some of them predicted ‘high-flow’ events more 
accurately than the others and vice versa. The performance of classifiers generated by different inducers varied 
notably on different data sets from the same watershed (Erechtchoukova et al., 2016). These results prompted 
investigation of the performance-based weighting schemes for aggregation of the predictions of individual 
classifiers. The ‘no free lunch’ theorem (Wolpert, 1996) implies the necessity to evaluate the performance of 
classifiers on a case-by-case basis. Therefore, four other combination rules derived from probabilistic schemes 
were studied: the average of probabilities, product of probabilities, minimum probability, and maximum 
probability. Formal definition of these rules was presented in (Duin and Tax, 2000): ሚ݂(ݖ௧) = arg	max	( ௨ୀଵ,…, ቀ(ݔ௧)ቁ,	                   (2) 

where rule is one of the functions from the list {maximum, minimum, average, product}, pj is the posteriori 
probability of correct classification of the j-th classifier,  j = 1,…,J. 

These rules have been investigated by Duin and Tax (2000) and Kittler et al. (1998) with respect to their 
application to pattern analysis and hand-written text recognition. In this study, the rules are applied to classify 
elements of the phase space re-constructed from hydrological and meteorological time series using time delay 
embedding.    

4. PERFORMANCE EVALUATION 

There are several empirical estimates of a generalization error of a classifier. The following considerations 
were taken into account for the selection of ensembles’ performance measures. Naturally, the low- and mid-
flow events dominate high-flow events and particularly flood events on many urbanized watershed. Therefore, 
hydrological and meteorological data sets are imbalanced. From operational management perspectives, the 
accurate prediction of high-flow events is extremely important to be able to issue alerts and to undertake 
mitigation measures where possible. Although misclassification of low-flow events imposes economic and 
social burden, it is less dangerous and implies that measures reflecting the performance of a classifier on a 
minority class are more informative for the given problem. Two measures better reflect the performance of 
classifiers on a minority class: (1) the recall (or sensitivity), which is the ratio of correctly identified high-flow 
events to their total number expressing how well a classifier recognizes such events; and (2) the precision of a 
classifier determined as the ratio of correctly identified high-flow events to the total number of elements 
classified as high-flow events. The relationship between these two measures, however, is inversely proportional 
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making the selection of the best rule using both recall and precision problematic.  There is an aggregate measure 
of a classifier performance – F-score: ܨ = ଶ்ிାிேାଶ்,                      (3) 

where TP is true positive or the number of high-flow elements classified correctly, FP and FN are the numbers 
of false positive and false negative elements, respectively.  Recall and F-score were evaluated on testing sets 
containing elements of the phase space not included into the training sets for developing classifiers.   

5. DATA SETS 

The combination rules described in section 3 were tested on the data sets reconstructed from time series of 
water levels and precipitation collected at the Spring Creek watershed, Ontario, Canada, over a two year period 
from 2013 to 2014 by the Toronto and Region Conservation Authority (TRCA). The watershed was chosen 
due to its ‘flashy’ response to intensive precipitation during the warm season from April to November. The 
watershed is classified as small with an area of about 50 km2. The Spring Creek flows over 25km through the 
highly urbanized and populated region which is composed of approximately 70% urbanized areas, 25% rural 
lands and 5% natural cover (TRCA, 2006). The stream daily average baseflow estimates are close to 0.20m3/s. 
The study was conducted for the hydrologically wet year, 2013, when 750mm of total rainfall was recorded 
during the warm period, the average instantaneous water discharge was approximately 0.64m3/s and the total 
annual water discharge was 0.02km3. During the dry year, 2014, the corresponding characteristics were 
estimated as 539mm of the total precipitation, 0.47m3/s for the instantaneous water discharge and 0.015km3 as 
the total annual water discharge (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hydrographs at the closing cross section of Spring Creek, Ontario, Canada. 
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Two stream gauges and two rain gauges are installed at the watershed. The downstream flow gauge was used 
at a cross section of interest where hydrological events were predicted. Time series from all four gauges were 
synchronized and transformed to the same level of granularity of 15 minutes. Time series of 30 minutes and 
one hour were obtained from the original data by way of aggregation.  

These time series were used to reconstruct elements of the phase spaces applying the framework summarized 
in section 2. These elements can be defined by the following formula: ܺ(ݐ + ݆߬) = 	 ଵܻ(ݐ − 1), ଵܻ(ݐ − 2), … , ଵܻ(ݐ − ,(߬ܭ … , ெܻ(ݐ − 1), ெܻ(ݐ − 2), … , ெܻ(ݐ − ,(߬ܭ ݐ)ݏݏ݈ܽܥ + ݆߬), (4) 

where X(t+jτ) is the element of the phase space built to generate predictions with jτ lead time, j = 1,…, K, Yi(t) 
is the instantaneous measurement from i-th gauge at time t, i = 1,…,M, Class(t) is the class label of an event at 
the investigated cross-section at the time t. The class label is determined by existing business rules set at the 
watershed by the management authority, and the underlying threshold value is obviously site-specific.  

Each augmented phase space was split into two parts with two thirds of the elements belonging to the set used 
to train a classifier and the rest of elements reserved for testing.    

6. RESULTS AND DISCUSSION  

Six groups of experiments were conducted on data sets with three different levels of granularity and for two 
hydrologically distinct years to examine the effect of the combination rule on the final outcome of predictions 
using the WEKA software package (Hall et al., 2009). Each group of computations included performance 
evaluation of an ensemble constructed out of seven heterogeneous classifiers based on five investigated 
combination rules for several prediction lead time intervals. From a probabilistic point of view, the combination 
rules can be justified if they are applied to independent classifiers. Although in this study the relationships 
between classifiers outputs were not tested statistically, their independence is supported by applying different 

inducers. Each group of experiments used 
data of the same granularity from the same 
year.   The recall and F-score reflecting the 
performance of each trained classifier were 
evaluated on records unseen during the 
training step. The results of computational 
experiments presented in Figure 2 and Table 
1 showed notable difference in the accuracy 
of generated predictions.  

Both estimates of a classifier’s generalization 
error confirmed that accuracy of predictions 
declines with increasing lead time intervals. 
The deviations in performance of ensembles 
constructed with different combination rules 
rose with extended lead time intervals.  

The classifier constructed with the minimum 
probability combination rule outperformed 
the others. It consistently delivered the most 
accurate results for all investigated data sets 
and all lead time intervals following its 
interpretation by Duin and Tax (2000) that the 
rule selects the least objected opinion. 

Two combination rules, namely, minimum 
probability and product of probabilities 
delivered the same results on all investigated 
datasets. This result coincides with the 
evaluations of combination rules for non-
precise observations where the product rule 
determines a subset of elements identified by 
the minimum rule. 

 

 

Figure 2. Recall of ensembles vs. prediction lead time 
developed on 15-minute time series. 
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The performance of classifiers utilizing maximum probability rule on all data sets was the weakest, contrasting 
to its interpretation as a rule which identifies a classifier with the highest estimated confidence. For the extended 

lead time intervals, the F-
score of predictors with this 
rule was below the best score 
by 26-28%.  

The majority vote and the 
average probability rule 
produced very similar results 
on the hydrological data sets. 
The predictor with the 
average probability rule 
aiming at reducing the 
classification error 
outperformed other 
classifiers only once, 
suggesting that this rule is 
acceptable, but not the most 
suitable for the given 
problem domain. The same 
can be claimed for the 
majority vote combination 
rule with one reservation. 
This rule is easy to 
implement. It allows for a 

straightforward 
interpretation which is 
important for decision 
making in applied problems. 

 

7.       CONCLUSION 

Classifiers can be useful for operational flood management in highly urbanized watershed equipped with 
stream and rain gauges. Combining the results of predictors constructed via training of individual inducers 
allows development of a more robust model that generates reliable predictions. However, the estimates of an 
ensemble’s generalization error vary up to 28% depending on the combination rule used to aggregate the 
individual predictions into the final judgement. The issue of selecting a combination rule which is the most 
suitable for an application domain has both theoretical importance and practical significance. Investigation of 
the combination rules was previously done mainly for areas of pattern recognition. In this study, the 
classification algorithms were applied to find patterns in data reconstructed from time series and predict future 
hydrological events. This explains the disagreement of the results with other investigations of combination 
rules. 

The study was conducted on data collected at a single watershed during two hydrologically distinct years using 
original and aggregated time series of different granularity. Therefore, the results allow for generalized 
conclusions. The minimum probability rule is the most suitable rule for both wet and dry hydrological years 
and data of granularity between 15- and 60-minute intervals. Although the results of data-driven analysis are 
site-specific, they suggest further investigation of this rule, including theoretical considerations and application 
of the rule to data sets from other watersheds. Another combination rule which should not be easily discarded 
for the given problem domain is the majority vote.  
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Table 1. F-score of developed classifiers  

Granularity Year Combination 
rule 

Lead time 

30 min 60 min 90 min 120 min 

30-minute 2013 Majority 0.9016 0.7857 0.6916  

Average 0.9091 0.7676 0.6733  

Product 0.9231 0.7381 0.6744  

Minimum 0.9231 0.7381 0.6744  

Maximum 0.8421 0.6078 0.5859  

2014 Majority 0.8800 0.7727 0.6667  

Average 0.8800 0.7727 0.6667  

Product 0.9744 0.8125 0.7407  

Minimum 0.9744 0.8125 0.7407  

Maximum 0.8444 0.6667 0.5556  

1-hour 2013 Majority  0.8372  0.7592 

Average  0.8438  0.7358 

Product  0.8376  0.7586 

Minimum  0.8376  0.7586 
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