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Abstract: Artificial landscapes are often used in landscape ecological models to investigate questions 
around movement of individuals, the spread of invasive plants and diseases or the stability of meta-populations. 
Using these artificial landscapes has some strong benefits such as simplification of landscape complexity, a 
means to replicate landscape scenarios or the potential to study systematic gradients. Communicating the 
results to non-theoreticians, however, is often difficult because there is often no quantitative comparison made 
to link them with reality. Other models that directly use digitized real landscapes as input do not have this 
barrier, but they are often lacking generalizability or the potential to forecast the effect of changes in the 
environment.  

In this study, we propose a method to generate artificial landscapes with key parameters derived a priori from 
real landscapes through analyses based on Geographical Information Systems (GIS) data: surface cover, spatial 
aggregation and patch size. Existing methods of generating artificial landscape often do only a posteriori 
comparisons to prove that their landscapes are ‘realistic’. We show that, by estimating the parameters 
beforehand, we can generate artificial landscapes incorporating multiple land use types that can be directly 
compared to existing landscapes in a quantitative manner. This allows for more targeted landscape generation 
and vastly reduces the parameter space that needs to be covered. At the same time, this method does not reduce 
the potential of the models in terms of being reproducible and transferable. 

We show an application of this method with two contrasting, complex agricultural landscapes from eastern 
Sub-Saharan Africa and South-east Australia. We artificially generated landscapes using key parameters from 
an analysis of digitized real landscapes and found that the algorithm allows flexibility in single target 
parameters while retaining ‘realism’. Realism is assessed in different way. For the Australian data, we compare 
ranges in land use cover and aggregation between real and generated landscapes. For the African data, we 
found a log-linear relationship between these two variables in the empirical data that we then used to generate 
the realistic artificial landscapes. By creating a measurable link between real and artificial landscapes this 
method will help reduce communication barriers between theoretical scientists and the general public, 
increasing the impact of our science. 
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1. INTRODUCTION 

Spatially-explicit modelling is used in landscape ecology to look at emerging regional patterns from locally 
determined rules. Its application covers a very broad range and it has, for example, been used to look at (1) 
behavioral factors that influence the spatial distribution of species (Parry et al., in press); (2) the success of 
weeds or diseases spreading in a landscape (Rees et al., 2009); and (3) the stability of whole meta-populations 
(Tromeur et al., 2016). Naturally, most of the effort in these studies is put on species specific parameters of the 
model often covering a huge parameter space (for example in Tromeur et al., 2016). However, the other half 
of the model, the underlying landscape, is often chosen less carefully. This makes it difficult to compare the 
results of two very specific models or between general models and empirical studies. 

Spatially-explicit ecological models either work with artificial landscapes or digitized ‘real’ landscapes. The 
choice between the two types is generally influenced by the research question, but also by other factors such 
as data availability. There is no right or wrong choice, but each method has its pros and cons. In this paper, we 
present a method to artificially generate realistic landscapes; one that combines benefits from both landscape 
types.  

The use of artificial landscapes is often of interest when investigating general or theoretical concepts (for 
example Parry et al., in press). They are easy to generate and replicable. By generating many landscapes, 
modelers can investigate systematic gradients in landscape attributes and thus increase the predictive power of 
their models. On the downside, results that are obtained from artificial landscapes are often hard to 
communicate because the landscapes are unrealistic. Even if they are ‘realistic’, their relatability to empirical 
landscapes is often not assessed (see examples below). From a modeller’s perspective, dealing with purely 
artificial landscapes also creates a much bigger parameter space which includes landscapes that would never 
exist in reality. Although this might be interesting from a theoretical point of view, it might shift the focus 
away from potential real-world applications of the model. 

The other possibility in landscape-ecological modelling is the use of digitized empirical landscapes. This is 
often done by using GIS layers that are then converted in some way into modelling input parameters (see for 
example Parry et al., in press and 2013). Having a ‘real’ landscape as input into a model makes it easy to 
communicate the obtained results. Generally, model findings can also easily be evaluated against field data 
from these landscapes (for example population dynamics Parry et al., in press). However, real landscapes are 
generally hard to obtain because they require intense on-the-ground work (although remote sensing can be used 
for some very general classifications, see Martínez and Mollicone, 2012). Consequently, the number of 
replicates is often limited and these often only represent snapshots in time (Parry et al., in press). Treating a 
‘real’ landscape as absolute truth can therefore be misleading. To account for this and to assess model 
sensitivity towards this, researchers would need to introduce some sort of variability into the ‘real’ landscapes 
(Thierry et al., 2017). Depending on the research question, there might also be some privacy issues around the 
use of real data (especially when modelling pest dynamics in a landscape). Finally, models using ‘real’ 
landscapes might experience what is called the ‘favorite pixel problem’ when communicating results. This 
means that the model quality will be assessed by results for single pixels that the reader knows very well. 
Ultimately, this can undermine trust in the model if the predictions do not match with the experience of the 
local expert. 

So, when it comes to applied landscape 
ecological modelling, neither of the two 
extremes might be a good choice. 
Rather, input landscapes should combine 
benefits of both, artificial and real 
landscapes (Fig. 1). There are some 
examples in the literature that claim to 
generate realistic landscapes but they 
either never assess realism (Hiebeler, 
2007), or base it on the ‘realistic look’ of 
landscapes (Jackson and Fahrig, 2012). 
Here we provide a method that analyses 
existing landscape data beforehand and 
then uses values of land use cover and 
aggregation as input parameters for the 
landscape generation algorithm. By doing 
this, we can easily and systematically generate artificial landscapes without losing realism and relatability. In 
the end, this will reduce communication barriers and potentially increase the impact of the respective models. 

Figure 1. The concept of realistic artificial landscapes 
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2.  SYSTEMS AND QUESTIONS 

2.1 Queensland Fruit Fly (Qfly, Bactrocera tryoni) in Australia’s Horticulture 

Qfly is one of the major pests for Australia’s horticulture sector and once established, the consequences can be 
dramatic. Adults lay their eggs in fruit across a very broad range of crops, causing decay and premature fruit 
drop, but most importantly the need for additional phytosanitary measures to prevent the closure of national 
and international markets (Clarke et al., 2011). Spatially-explicit ecological modelling is used to look at Qfly 
population dynamics in Australia’s horticultural areas and assess the potential of different management options. 

There are two main aspects in the biology of Qfly that require corresponding features in the model-landscapes: 
(1) Qfly is an extremely polyphagous insect. Its host range covers over 150 varieties of commercial fruits and 
vegetables plus a multitude of native fruit trees. Especially in horticultural areas, where highly suitable fruit is 
abundant, Qfly populations will utilize several of these hosts and build up populations over the summer. 
Population decrease, as a consequence of overwintering mortality, will largely be determined by the availability 
and quality of sheltering sites (better microclimate). In order to account for this, spatially explicit population 
models require input-
landscapes that consist of a 
multitude of land use types, of 
which each can potentially 
have a different resource 
quality, seasonality and 
sheltering suitability.  

(2) There is some evidence 
that, when local resource 
density is high, the movement 
of Qfly might be very local to 
almost non-existent (Balagawi 
et al., 2012). However, when 
adult females cannot find ripe 
fruit nearby, they will fly 
several hundred meters to 
another, more suitable patch. 
They might also forage for 
shelter habitats, adult food 
resources or overwintering 
sites (such as urban backyards 
or a dense forest). In order to 
investigate this potential 
sequential use of different 
resources, input-landscapes 
have to account for different 
levels of spatial aggregation. 

Although we do have very 
good land use data, we 
refrained from using the real 
landscapes because of two main 
reasons: (1) identifying 
individual properties in the context of pest populations might violate individual privacy and (2) the aim of this 
project is to develop general guidelines on area-wide Qfly management. The use of very special cases might 
impose additional communication barriers. 

2.2 Cassava whitefly in East Sub-Saharan Africa 

Cassava is a staple food for people across Sub-Saharan Africa. Over the last 20 years, there has been an increase 
in the frequency of outbreaks of ‘Cassava whitefly’ Bemisia tabaci species complex (Hemiptera: Aleyrodidae). 
The species in the Cassava whitefly complex can reduce yields through both direct feeding on and indirect 
damage to Cassava, in particular as a vector of viruses associated with two important plant diseases: Cassava 
Mosaic Disease and Cassava Brown-Streak Disease.  

Figure 2. Flow charts that show the steps involved in (A) analyzing real 
landscapes and (B) constructing artificial landscapes 
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The species of Bemisia tabaci found on Cassava in Africa are thought to be strongly associated with their 
Cassava host (e.g. Legg et al., 2014; Sseruwagi et al., 2006).  Thus, the spatial extent and aggregation of 
Cassava, along with the management of the crop over time, can be considered to be a key driver of Cassava 
whitefly dynamics. A spatial simulation model has been constructed to explore how the spatial extent and 
configuration of Cassava influences this population dynamic (building on De Barro, 2012), as well as different 
temporal planting regimes (such as the cropping period and synchrony of cropping).  

Unlike the case of Qfly in Australia, we have very limited landscape data (and few resources with which to 
obtain data) at the resolution required to answer these research questions across east Sub-Saharan Africa. A 
field team has spent two field seasons in Malawi, Tanzania and Uganda collecting data on the Cassava whitefly 
and mapping crops at a radius of ~100m around a focal Cassava field. This area is too small to meaningfully 
provide input data to simulate pest behavior across ‘landscapes’, however we can analyse the digitized data on 
land cover at this small scale and use it to generate artificial landscapes with our algorithm.  This allows us to 
extrapolate the existing data to much larger areas, and explore key factors in the landscape configuration of 
Cassava, along with management scenarios, that may influence simulated population dynamics of Cassava 
whitefly.   

3.  METHODS 

The landscape generation algorithm needs two input parameters: the proportions of land use types in the 
landscape and the desired landscape-level aggregation score. These can either be derived from empirical 
landscapes (as in Fig. 2A and described in section 3.2) or can be chosen freely, for example when generating 
complexity gradients. In the following, we will briefly describe the type of input data needed by describing the 
examples used in this study. Then we will go on and describe the features of the proposed algorithm: the 
landscape analysis and generation.  

3.1 Data sources and preparation 

For the Australian data, we used vector layers of crop survey data from private organizations comprising data 
in fruit growing areas from three study regions. This was combined with vector data of the catchment scale 
state land use layers from the Australian Collaborative Land Use Management Program (ACLUMP, Australian 
Bureau of Agricultural and Resource Economics and Sciences) to also capture land cover in the surrounding 
areas. The combined layer was converted into a continuous grid surface with a 100m resolution. 

In cassava growing areas in east Africa, land use was digitized in the field using ArcGIS Collector (ESRI 2015. 
ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems Research Institute) and assigned to one 
of 15 land use types at a radius of 100m from the edge of each focal cassava field. Vector data from each region 
was then converted to a grid using ArcGIS. Cell size of the grid can be chosen depending on the desired size 
and resolution. These are often dependent on the specific biological questions but a good proxy is to select a 
value in the lower quartile of patch sizes in the landscape measured using a GIS. 

For our two examples, we 
picked a 100x100m 
resolution for the 
Australian data and a 
10x10m resolution for the 
African data (fields 
generally are much smaller 
in Africa than Australia).  

 3.2 Analyzing  

We used the rasterized data 
as input for the 
neighborhood analysis 
(Fig.2A). Neighborhood 
scores were calculated for 
each grid cell p as the 

number of neighboring cells with the same land use type as p. These neighborhood scores are then normalized 
by the total number of neighbors. In our examples, we used a square grid with an eight-neighbor rule. This 
means, neighborhood scores were divided by eight for inner cells, five for edge cells, and three for the four 
corner-cells, respectively. The normalized neighborhood scores are then aggregated to ‘land use-type’ 

Figure 3. Example of a real Australian landscape (2x2 km) with a landscape-level 
aggregation score of 0.46. (A) shows the rasterized land use data and (B) the normalized 
neighborhood scores for each cell. The percentages of cover for each land use-type and 

the respective ‘land use-type’-level aggregation scores are given in Table 1. 

B A 
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neighborhood scores or a landscape-level aggregation score by calculating the respective means. Table 1 shows 
the means of aggregation scores of different land use types in the example landscape presented in Fig.3A. 

 

3.3 Constructing artificial landscapes 

In a first step, land use types are assigned randomly to each cell in a landscape. By doing this with a given 
probability (for example the proportions in a real landscape), generated landscapes already include some 
variability. The first landscape (generated at random) is then analyzed in terms of its overall aggregation. If the 
value is below the desired aggregation score (usually values of random landscapes are very low, see Fig. 5), 
rearrangement begins. Two cells with different land use types are selected at random from the lower quartile 
of cell-level neighborhood scores and their land use types are exchanged. In this way, we ensure that the overall 
proportions of these land use types do not change.  

Then, the algorithm evaluates 
whether the exchange was a step 
towards a higher aggregation.  To 
reduce computational effort and to 
reduce the possibility of a dead-end 
in the optimization, this evaluation is 
done on the scale of the two 
exchanged cells. If the local 
neighborhood score for any of the 
two cells was increased by the 
exchange, the new arrangement is 
accepted. If the new local 
neighborhood scores are the same or 
smaller for both cells, the change is 
rejected and two new cells are 
selected. After every tenth 
optimization step, the new 
landscape-level aggregation score is 

calculated and compared to the 
input value. This is repeated until 
the score of the new landscape is 
greater than or equal to the input 
value. 

The output generated by the 
algorithm includes: a list of the 
land use type of each cell in the 
new landscape; a map of the new 
landscape and the  neighborhood 
scores for each cell (Fig.6); the 
percent of cover for each land use 
type and the respective ‘land use-
type’ aggregation scores (Table 
2); and finally, the new 
landscape-level aggregation 
score. 

Land use type Nat. 
veg. 

Past. Trees Veg. 
Oth. 
fruit 

Grap. N/A 
oth. 

hosts 
Struc. Urb. Wat. Citr. 

Sum. 
Citr. 

Stone 
fruit 

Pome 
fruit 

color code                

% of cells 0 30.3 9.25 2.25 1.5 7.25 9.5 1.25 6.0 5.5 0.75 22.5 4.0 0 0 

Aggregation NA 0.65 0.53 0.46 0.00 0.33 0.41 0.12 0.08 0.15 0.19 0.48 0.36 NA NA 

Figure 4. Relation between the proportion of Cassava and its aggregation in 
the real African landscapes. Different colors represent the different countries 

in which the landscapes were sampled. The dotted line is the result from a 
linear model with y= 0.2x + 0.93 (x= log10(proportion of Cassava)). 

Figure 5.  relationship between total proportion of a land use-type in a 
landscape and its aggregation score based on 150 random landscapes compared 

to their ‘realistic’ counterparts using the relationship in Fig.4 

Table 1. Cover and aggregation of the different land use types in the example landscape presented in Fig.3. Land use 
types include: Native vegetation, Pasture, Trees, Vegetables, Other fruit trees, Grapevines, N/A (empty), other hosts, 
Structures, Urban, Water, Citrus, Summer Citrus, Stonefruit, Pomefruit. 
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4.  RESULTS 

The analysis part of the tool (Fig. 2A) can be used to characterize landscapes in terms of their composition and 
aggregation. This can, for example, be used to interpolate from a limited sample-size. In the example of the 
African data, we used it to look at the relationship between the amount of Cassava in the landscape and its 
aggregation (Fig. 4). We found a log-linear relationship between them, within and across regions. We used this 
relationship, allowed 10% deviation from the exact value, and generated 150 ‘realistic’ artificial landscapes 

from this relationship. Those 
vary dramatically from purely 
random landscapes with the 
same proportion of Cassava as 
input variable (see Fig.5). By 
using the new algorithm, we 
can increase the number and 
size of landscapes for our 
simulations while maintaining 
the empirical relationship 
found in the real data. 

For the Australian data, we 
generated ten realistic 
artificial landscapes for each 
real landscape. As an 
example, we present four 
artificial landscapes generated 
from the same landscape in 
Fig.3 (see Fig. 6). The range of 

values for cover and aggregation of the ten landscapes are given in Table 2. By using these as input landscapes 
for our spatially explicit population models, we increase the generalizability of our modelling results. 
Increasing the variability allows for the testing of model sensitivity which also will help us to account for 
uncertainty in the data (such as errors or changes in the land use data). On top of this, we can ensure that we 
are not violating privacy by giving out sensitive information. However, we still keep communities and 
stakeholders engaged because they can relate to the landscapes and we directly asses in which aspects these 
represent reality.  

Landuse type Nat. 
veg. Past. Trees Veg. Oth. 

fruit Grap. N/A oth. 
hosts Struc. Urb. Wat. Citr. Sum. 

Citr. 
Stone 
fruit 

Pome 
fruit 

color code                

% of cells 0 
25.8 

– 
36.5 

7.5 
– 

10.8 

0.75 
– 

3.0 

0.75 
– 

3.0 

5.75 
– 

9.75 

6.7 
– 

10.8 

1.0 
– 

2.25 

4.75 
– 

8.75 

4.25 
– 

7.25 

0.25 
– 

1.50 

18.5 
– 

27.8 

2.0 
– 

6.25 
0 0 

Aggregation NA 
0.51

- 
0.59 

0.34
- 

0.54 

0     
- 

0.46 

0     
- 

0.58 

0.33
- 

0.49 

0.36
- 

0.46 

0     
- 

0.38 

0.27
- 

0.48 

0.30
- 

0.46 

0     
-   

0.4 

0.46
-

0.58 

0.23
- 

0.46 
NA NA 

5.  DISCUSSION AND CONCLUSIONS 

The use of artificial landscapes is extremely common in spatially-explicit ecosystem models. In order to 
communicate findings to non-theoreticians it can help to make these landscapes ‘realistic’. Here, we present a 
method that estimates landscape metrics from empirical landscapes and uses them as an input into a landscape 
generation algorithm. By using the same technique to analyze  both real and artificial landscapes, we can 
quantify the ‘realism’ of the newly generated landscapes in terms of landuse cover and aggregation.  

This direct evaluation is what makes this method uniquely different from already existing landscape generation 
algorithms such as the one proposed in Hiebeler (2007). Hiebeler also generates landscapes at random, then 
selects two cells, exchanges their land use types and finally evaluates whether to keep or reject the new 
landscapes. The method in Hiebeler (2007), however, only considers two land use types - ‘suitable’ and 
‘unsuitable’ – and upscaling it to multiple types is not easily achieved. When generating landscapes with a 
multitude of different land use types (such as the Australian data), the output landscapes show substantial 

Figure 6. Four examples of artificial landscapes generated from the real landscape 
presented in Fig.3. All landscapes have an overall landscape-level aggregation 

score of around 0.46 (0.16-0.19 for random landscapes). The range of 
corresponding percentages of cover for each land use type and the respective 

“land use type” aggregation scores are given in Table 2. Scale indicates 1 
kil t

Table 2. Ranges in land use type cover and aggregation for the ten artificial landscapes, generated from the real landscape 
presented in Fig.3. Rows three and four indicate the range of these values across the ten generated landscapes (top= 
minimum, bottom=maximum). 
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variability in the aggregation score of different land use types. If the focus of the modelling is on the 
clusteredness of one particular land use type, changing the method accordingly is possible. This can, for 
example, be done by a hierarchical landscape generation where first only one land use type is assigned 
accordingly and when its aggregation score is reached, the rest of the landscape is assembled.  

The landscape generation algorithm can potentially reach an ‘optimization dead-end’ when the further 
exchange of land use types cannot lead to a higher clustering score. This is especially true for very ordered 
landscapes. However, in our work, this only occurred at the high end of aggregation gradients and not when 
using empirical data as input. If this happens regularly, one could change the rule after which the exchanged 
cells are selected, or switch to other algorithms for landscape generation that can create more ordered structures 
(such as in Jackson and Fahrig (2012)).  

Artificial landscapes are a useful tool in landscape ecological modelling. Generating them in a way that allows 
quantification of their realism, as proposed in this paper, will help reducing communication barriers and can 
potentially increase the impact of adaptive models. 
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