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Abstract: The Australian Water Resource Assessment-Landscape model (AWRA-L) is calibrated against 
a selection of data from ~500 gauged catchments around Australia to identify a single optimised set of model 
parameter with an emphasis on improving streamflow prediction. However, this regional approach to 
AWRA-L calibration can lead to high uncertainty in estimation, especially in ungauged catchments. An 
approach to help improve prediction in ungauged area is the assimilation of remotely sensed data into 
hydrological models. Streamflow discharges (Q), satellite soil moisture (SM) and satellite evapotranspiration 
(ET) observations have been individually assimilated into hydrological models to improve predicted outputs. 
This paper aims to evaluate performance of both individual and joint assimilation of these three hydrological 
observations into the AWRA-L model using particle filter technique. 

The investigation used collected from six catchments across Australia with areas varying from 70 - 130 km2. 
In-situ streamflow data from the Hydrological Reference Stations (HRS) are divided by their respective 
catchment area to generate observations with units that are consistent with AWRA-L modelled streamflow. 
The European Space Agency Climate Change Initiative (ESA-CCI) soil moisture products were normalised 
to ensure that observed and simulated soil moisture are comparable. We disaggregated the 8-day CSIRO 
MODIS ReScaled potential ET (CMRS-ET) product to daily ET estimates using daily potential 
evapotranspiration (PET) and a linear interpolation method. Forcing data, initial conditions and spatial 
parameters of six catchments are collected from the datasets used for calibration and validation of the 
AWRA-L model for 2010. 

To address the limitation of high computational time required by the particle filter method in the grid-based 
AWRA-L model, we adopt a lump catchment approach where forcing inputs, initial conditions, and spatial 
parameters in each catchment were aggregated into one lumped value. Afterward the aggregated forcing is 
perturbed cell-wise using a normal distribution with 1000 samples to create a sample-based. These sample-
based eventually are informed to the AWRA-L for the data assimilation process. 

Four assimilation scenarios were investigated, namely: (1) sole assimilation of Q, (2) sole assimilation of 
satellite SM, (3) sole assimilation of satellite ET, and (4) joint assimilation of Q, SM and ET. In addition, an 
open-loop simulation, i.e. without assimilation, was run as a reference. Statistical metrics such as correlation 
coefficient (R2), Nash-Sutcliffe model efficiency (NSE), root mean squared error (RMSE), and bias are used 
to assess the predicted outputs of the data assimilation model and open loop simulation. 

Initial results indicated that only assimilating Q was successful in improving ET predictions in all study 
catchments. The assimilation of ET, however, did not improve streamflow predictions. Although assimilation 
of soil moisture produces a slight improvement in ET prediction, it degrades the predicted streamflow in this 
study. Difference with the single assimilations, the joint assimilation of all three observations can improve all 
predictions compared with the open loop simulation in some catchments. In addition, we found that the 
model performs poorly in a catchment with very small streamflow. These findings suggest further research 
efforts in order to fully understand the data assimilation problem. Nevertheless, the results in this paper have 
demonstrated the potential uses of data assimilation to reduce prediction uncertainty of the AWRA-L model 
across Australia. 
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1. INTRODUCTION 

The Australian Water Resources Assessment (AWRA) - Landscape model (AWRA-L) model is a daily grid-
based water balance model which considers interactions between the atmosphere, the soil, groundwater and 
surface water stores in terms of the model water balance. The current model cell size is 0.050 primarily to 
match the spatial resolution of forcing meteorology datasets. Each model grid is classified into fractions of 
two hydrological response units (HRU), namely shallow-rooted and deep-rooted vegetation (Figure 1). At 
each grid cell, the model can estimate groundwater, surface water and soil moisture contents in different 
layers as well as leaf-biomass for the two HRUs using radiation, energy and water balance equations. The 
daily 0.05 degree precipitation, solar radiation and temperatures, and parameters at each grid cell are the 
model input datasets (Van Dijk 2010). 

To improve the model predictions accuracy, it is possible to incorporate satellite observations in the AWRA-
L model such as using remotely sensed data in model 
calibration, model evaluation and data assimilation 
(Van Dijk and Renzullo 2011).  

For model calibration, Zhang et al. (2011) used 
satellite soil moisture and leaf area index to calibrate 
the AWRA-L model to attempt predictions of 
streamflow, soil moisture, and vegetation dynamics. 
Frost et al. (2015) calibrated and compared the 
AWRA-L model with different combinations of 
stream flow, evapotranspiration, and soil moisture. 
Currently, Kunnath-Poovakka et al. (2016) used 
remotely sensed evapotranspiration and soil moisture 
to calibrate the AWRA-L model to improve 
streamflow predictions in catchments with low 
average runoff. In terms of the model evaluation, Van 
Dijk et al. (2011) used GRACE data to evaluate the 
terrestrial water storage derived from the AWRA-L 
model. Regarding assimilation of satellite data in the AWRA-L model, Renzullo et al. (2014) assimilated 
remotely sensed soil moisture into the AWRA-L model using an Ensemble Kalman filter (EnKF) technique 
to predict root-zone soil moisture. Although there have been significant efforts on the model with data 
assimilation, still more research is required to understand estimates of the model prediction uncertainty and 
the model performance in terms of water balance. 

This paper aims to develop both single and joint assimilation of streamflow, soil moisture, and ET 
observations in the AWRA-L model to improve predictions and quantify uncertainty in model terms. By 
implementing a joint assimilation to constrain the model with all observations, we attempt to find consistency 
between all water balance terms, modelled 
and observed. 

2. METHODOLOGY 

2.1. Study areas 

The meteorological data and parameters in the 
AWRA-L model vary in space and time 
across the country. To evaluate robustness 
and consistency of the model with data 
assimilation, six catchments located across 
Australia are selected (Figure 2). Information 
of the six catchments is shown in Table 1. 
These selected catchments are small enough 
to ensure that a time-lag between rainfall and 
streamflow response at the downstream gauge 
is less than a day. Here we adopt a lumped 
catchment approach and aggregate a 
catchment into a grid cell. 

 

Figure 1. The AWRA-L model 

Figure 2. Locations of the six study catchments 
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2.2. Data and data pre-
processing  

The forcing input datasets, initial 
conditions and spatial parameters 
of each catchment are selected 
from the benchmarking data of the 
AWRA-L model as a grid-based 
format. The model uses these input 
data to drive energy and water 
balance equations at all grid cells 
of a catchment. However particle 
filtering (Moradkhani et al. 2005) requires many particles (~1000’s) per grid cell, which makes the 
application to spatial data assimilation intractable. So to reduce the dimensionality of the problem, and save 
on computing time, we adopt a lumped catchment approach to aggregate forcing input, initial conditions and 
model parameters of a catchment to a lumped value. We then perturb the lumped value into a sample-based. 
The AWRA-L model with particle filter will read input data from the sample-based rather than reading a 
large number of the grid-based catchment samples. The overview of the data pre-processing and data 
assimilation is shown in Figure 3. 

Daily streamflow (Q) at catchment outlets are collected from the Hydrological Reference Stations (HRS). 
The observed streamflow in GL is divided by a corresponding catchment area in km2 to generate streamflow 
observations in mm. 

Evapotranspiration (ET) is derived from the 
CMRS-ET that is based on the MODIS 
reflectance and short wave infrared data, and 
gridded meteorological surfaces (Guerschman 
et al. 2009). A linear relationship between the 
8-day CMRS-ET and the daily Australian 5km 
potential evaporation developed by CSIRO is 
used to disaggregate the composite data into 
daily ET observations. 

Soil moisture (SM) are extracted from 
combination products of passive and active 
microwave ESA-CCI (Liu et al. 2012) at grid 
cells corresponding to catchment locations. So 
that simulated and observed data are 
comparable, soil moisture observations and 
simulations are normalised before 
implementing further calculations.  

2.3. Particle filter 

The overview of the AWRA-L model coupling with particle filter approach is shown in Figure 3. This study 
uses streamflow, evapotranspiration and soil moisture observations to constrain the model and to estimate 
uncertainty of the model outputs. The forecast and analysis processes are presented as follows: 

• Aggregate initial conditions, forcing inputs and spatial parameters of a catchment into a grid cell, 
• Perturb the aggregated precipitation, temperatures and solar radiation to generate a sample-based with 

1000 samples using Equation (1), where ߳௧	~	ܷሾܽ, ܾሿ for the precipitation error and ߳௧	~	ܰ(ߤ,  ఢ) for theߪ
other forcing input errors. Here, a and b are equal to 0.4 and 1.6 respectively. The statistical errors 
௜	௧ݑ ,of the other forcing input data presented in Jones et al. (2009) (ఢߪ	݀݊ܽ	ߤ) = ௧଴ݑ	 ൅	߳௧, (1) 

• Calculate weights using simulated data ݕො௧௜ and observed data ݕ௧௢ with assumption of a Gaussian 
distribution. The variance of streamflow, evapotranspiration or soil moisture (ߪଶ) are set to a 
corresponding observation multiplied by an arbitrary alpha (0.2). 

 

Figure 3. Overview of the research processes 

Table 1. Information of the six study catchments 

ID Station name River name State 
Area 
(km2) 

Lat Lon 

146010 Army Camp Coomera QLD 90 -28.03 153.19 

218001 Tuross Vale Tuross NSW 97 -36.27 149.51 

312061 
Guilford 
Junction 

Hellyer TAS 100 -41.42 145.68 

408202 Amphitheatre Avoca VIC 83 -37.18 143.41 

410730 Gingera Cotter ACT 130 -35.59 148.82 

614044 
Yarragil 
Formation 

Yarragil 
Brook 

WA 71 -32.81 116.16 
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 ω୲	୧ = 	 ଵඥଶగఙమ exp	(ି(௬ො೟೔ି௬೟೚)	మଶఙమ ), (2) 

• Normalise the weights to ensure the sum of normalised weights is equal to 1,  
• Use the resampling systematic method to resample particles to generate a new sample, 
• Update the states corresponding with the new samples, and 
• Use the updated states at time step t as initial conditions of the model at the next time step t+1. 

2.4. Study scenarios and assessment 

To evaluate the model performance in terms of the model water balance, we explored four assimilation 
scenarios including (1) assimilation of Q alone, (2) assimilation of ET alone, (3) assimilation of SM alone, 
and (4) the joint assimilation of all three observations. These scenarios are implemented over six catchments 
which have different climate conditions and different land properties to update ten model states including top 
soil, shallow root zone, deep root zone, leaf biomass in two HRUs as well as surface water and groundwater. 

First, single assimilations of streamflow, evapotranspiration and soil moisture are implemented at all six 
catchments. Second, a joint assimilation of all three observations is applied to six catchments. An open-loop 
simulation, i.e. without data assimilation, is also performed to produce a reference set of simulated 
observations. Finally, the data assimilations and the open-loop simulation results were compared to assess the 
performance. 

Different statistical metrics are used as the assessment criteria for different types of hydrological observation 
assimilation. Correlation coefficient (R2), Nash-Sutcliffe model efficiency (NSE) and bias are used to assess 
the predicted streamflow, whereas sole R2 is used to evaluate soil moisture prediction because of different 
units and measured layers in soil moisture. Lastly, R2 and root mean squared error (RMSE) metrics are used 
to measure accuracy of ET predictions. To evaluate the model prediction uncertainty, 95% confidence 
intervals are also evaluated along with the predicted results in each scenario. 

3. RESULTS AND DISCUSSION 

We applied single and joint assimilation of three hydrological observations at all six catchments. Here, we 
present the results of four scenarios at catchment ID408202 (Table 2). The results of four scenarios at the 
other catchments (ID of catchment corresponding to the gauge ID in Table 1) are summarised in Table 3. 

3.1. Single assimilation 

We begin with Scenario 1 
by assimilating streamflow 
observations alone into the 
AWRA-L model. The 
predicted ET and SM are 
compared with the 
observations as a measure 
of performance. 
Assimilation of Q was 
observed to reduce the error 
between the simulations and 
the observations, especially during high rainfall events (Figure 4a and b). It is seen that three metrics of R2, 
NSE and bias of Q are improved in comparison with these metrics of the simulated streamflow in the open-
loop (Table 2). In addition, there are slightly improvements in predicted ET values in terms of RMSE value 
compared with these metrics of the open-loop simulation (Table 2). The predicted SM is relatively similar to 
the output of the open-loop simulation (Figure 4d). This means that assimilated Q somewhat improves the 
predicted ET and SM. The same results are found in the other catchments in this study, excepting the 
catchment ID614044 (Table 3). This result will be discussed in the last paragraph of this section.  

In scenario 2, ET observations are assimilated in the AWRA-L model to improve the estimates of ET and the 
model predictions. As expected the modelled ET matches well the ET observations (Figure 5c). Although 
assimilation of ET observations can improve SM contents (Table 2 and Figure 5d), it degrades the 
streamflow values, especially in the peak events (Figure 5b and c). This is because the model increases the 
amount of water for ET and SM, and simultaneously decreases the amount of water for streamflow to ensure 

Table 2. Statistical metrics of four scenarios at the gauge ID408202 

Observations Metrics 
ID408202 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Open-loop 

Stream flow 

R2 0.87 0.28 0.42 0.75 0.73 

NSE 0.63 0.07 0.15 0.54 0.46 

Bias -0.12 -0.39 -0.33 -0.23 -0.29 

ET 
R2 0.81 0.92 0.81 0.83 0.81 

RMSE 0.65 0.43 0.63 0.60 0.72 

Soil moisture R2 0.63 0.65 0.66 0.64 0.62 
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the model water balance. Values of R2 and RMSE from the data assimilation in the other catchments are 
found to be better than these values from the open loop simulation. 

 

Figure 4. Single assimilation of streamflow 

 

Figure 5. Assimilation of evapotranspiration

 

Figure 6. Single assimilation of soil moisture 

 

Figure 7. Joint assimilation of Q, ET and SM 

In the third scenario, SM observation is assimilated in the AWRA-L model to improve estimates soil 
moisture content in the top soil layer and the predictions of Q as well as ET. The results show that the 
predicted streamflow values are underestimated in comparison with observations in the high intense rainfall 
events (Figure 6b). However the predicted streamflow discharges in the low flows are overestimations 
compared with observations, as negative bias value is found in this case (Table 2). Similar to the scenario 2 
where only ET is assimilated, single assimilation of SM observations slightly improves the predicted ET 
(Table 2) in comparison with the results of the open-loop simulation. However the interactions between three 
hydrological observations detrimentally affects the outflow in this case, resulting in in this case. Again, the 
same results of the scenario 3 are found in the other study catchments (Table 3), excluding catchment 
ID146010 results. The assimilation of SM in this catchment improves both predictions of streamflow and ET. 
This inconsistent result was also found in the previous studies, for example Sun et al. (2016) indicated that 
assimilation of SM can improve the estimates of Q, whereas Yan and Moradkhani (2016) showed that the 
assimilated SM degrades the estimate of streamflow. Further research is needed to resolve this inconsistency. 
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It should be noted that the results for catchment ID614044 are different to the others, which may be due to 
conflict between input data and observations. The data in this area indicated that there are high solar radiation 
values, very arid, almost zero of Q and SM contents in a top soil layer; thereby the estimate of ET is expected 
to be small. However ET observations are still high from January to April. This mismatch can be a result of 
uncertainty in observations due to the retrieval algorithm or external factors such as wind, soil type, and 
vegetation. As a result, the statistical metrics are very poor (Table 3). It can be seen that in a very dry 
condition, the model cannot capture the observations in both cases with or without the data assimilation. This 
result suggests a further research of the model in short-term and long-term dry condition catchments as well 
as the effects of uncertainty in observations.       

3.2. Joint assimilation 

We consider joint assimilation (scenario 4) as a way of mitigating those instances when single source data 
assimilation does not improve the estimates The results demonstrate that there are improvements in the 
estimates of Q, ET as well as SM in comparison with the open-loop simulation (Table 2 and Figure 7). Note 
that in scenario 4 ‘improvement’ cannot be independently verified as all the data are used in the assimilation. 
Here by improvement we mean agreement with the observation. The same result is found in the catchment 
ID312061 (Table 3). However in the other catchments, there are improvements in the estimates of ET and 
soil moistures compared with the open-loop simulation, but the accuracy of predicted streamflow is lower 
than the simulated streamflow from the model without data assimilation. These findings suggest further 
investigation required to identify the possible cause of the inconsistencies, as well as revisiting the 
formulation of the weights in the particle filter. 

Table 3. Summary of three single assimilation scenarios at the other five catchments 

Scenarios ID 

Data assimilation Open-loop 

Stream flow (Q) 
Evapotranspira

tion (ET) 
SM Stream flow Evapotranspiration SM 

R2 NSE Bias R2 RMSE R2 R2 NSE Bias R2 RMSE R2 

1 
(Q) 

146010 0.95 0.86 -0.29 0.78 0.99 0.64 0.71 0.49 -1.05 0.72 1.04 0.63 

218001 0.85 0.51 0.10 0.79 0.71 0.65 0.73 0.44 -0.23 0.73 0.75 0.66 

312061 0.99 0.99 -0.13 0.70 0.83 0.40 0.90 0.70 -0.50 0.68 0.95 0.47 

410730 0.99 0.98 0.01 0.85 0.84 0.54 0.9 0.78 0.32 0.76 0.77 0.58 

614044 0.22 -1.91 -0.07 0.04 1.53 0.65 0.23 -2.78 -0.18 0.8 0.9 0.63 

2 
(ET) 

146010 0.71 0.32 0.82 0.97 0.40 0.65 0.71 0.49 -1.05 0.72 1.04 0.63 

218001 0.41 0.16 -0.60 0.95 0.36 0.65 0.73 0.44 -0.23 0.73 0.75 0.66 

312061 0.83 0.66 0.49 0.81 0.63 0.42 0.90 0.70 -0.50 0.68 0.95 0.47 

410730 0.48 0.02 -0.27 0.96 0.39 0.55 0.9 0.78 0.32 0.76 0.77 0.58 

614044 0.43 -3.3 -0.07 0.4 1.27 0.64 0.23 -2.78 -0.18 0.8 0.9 0.63 

3 
(SM) 

146010 0.78 0.60 -0.37 0.84 0.87 0.69 0.71 0.49 -1.05 0.72 1.04 0.63 

218001 0.69 0.46 -0.43 0.79 0.74 0.67 0.73 0.44 -0.23 0.73 0.75 0.66 

312061 0.55 -0.33 -0.21 0.66 0.91 0.49 0.90 0.70 -0.50 0.68 0.95 0.47 

410730 0.69 -0.84 -2.03 0.86 0.82 0.60 0.9 0.78 0.32 0.76 0.77 0.58 

614044 0.21 -2.45 -0.18 0.05 1.56 0.67 0.23 -2.78 -0.18 0.8 0.9 0.63 

4 
(Q-ET-SM) 

146010 0.64 -0.36 -1.31 0.86 0.78 0.67 0.71 0.49 -1.05 0.72 1.04 0.63 

218001 0.67 0.43 0.17 0.83 0.67 0.67 0.73 0.44 -0.23 0.73 0.75 0.66 

312061 0.94 0.73 -0.41 0.69 0.83 0.47 0.90 0.70 -0.50 0.68 0.95 0.47 

410730 0.83 0.63 -0.32 0.88 0.75 0.59 0.9 0.78 0.32 0.76 0.77 0.58 

614044 0.12 -0.42 -0.73 0.08 1.46 0.64 0.23 -2.78 -0.18 0.8 0.9 0.63 

4. CONCLUSIONS 

As with previous research, this paper explores the assimilation of individual observation of streamflow, ET 
or soil moisture into AWRA-L. However we also implement the joint assimilation of all three observations to 
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understand the estimates of model uncertainty as well as the interactions between observations in terms of the 
model water balances. The results to-date demonstrated that:  

• assimilation of only streamflow can improve the predictions of the ET in all catchments and soil moisture 
in some catchments, 

• assimilation of solely ET does  not always improve the predicted soil moisture and is shown to degrade 
the prediction of streamflow, 

• individual assimilation of soil moisture can improve the ET in most catchments but can worsen the 
predicted streamflow, and 

• joint assimilation could improve all predictions in comparison with the open-loop simulation in some 
catchments but this result needs more investigation. 

In this study, we assumed the model parameters are non-stationary and a Gaussian distribution for white 
noise observations. Future research could consider a joint update of states and parameters and/or non-
Gaussian distribution for the data error.   
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