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Abstract: An accurate knowledge of soil moisture and groundwater storage is crucial to understand 
hydrological process and extreme climate events. The model outputs of the terrestrial water storage are biased 
by inaccurate forcing data, inefficacious model physics, and improper model parameter calibration. To mitigate 
the model uncertainty, the observation (e.g., from remote sensing as well as ground in-situ data) are often 
integrated into the model to improve the simulation result via data assimilation (DA). 

This study intends to enhance the estimation of soil moisture and groundwater storage by assimilating the 
Gravity Recovery And Climate Experiment (GRACE) observation into the Community Atmosphere Biosphere 
Land Exchange (CABLE) land surface model using the particle filter (PF) framework. The PF is developed for 
GRACE DA in order to accommodate different types of posterior error distribution and thus allow the realistic 
system representation where the distribution of model and observation errors are usually unknown. The early 
development of PF commonly suffered from the particle degeneracy and impoverishment problems, mainly 
caused by the insufficient number of particles. This study uses the sequential importance resampling (SIR) 
approach to reduce the problems. The simulation conducted to evaluate the filter performance and determine 
the effective number of particles shows that the SIR approach can deliver the accurate water storage estimates 
with the usage of only 100 particles. Moreover, the uncertainty of GRACE observation is obtained directly 
from the full error variance-covariance matrix provided as a part of the GRACE data product. This method 
demonstrates the use of a realistic representative of GRACE uncertainty, which is spatially correlated in nature, 
leads to an improvement of storage computation.  

The developed GRACE DA scheme is demonstrated over the Goulburn catchment located in the Upper Hunter 
region, NSW, where the ground observations (surface soil moisture, root-zone soil moisture, and groundwater 
level) from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network and the 
Department of Primary Industries, Office of Water, New South Wales are available for evaluation of our DA 
results. This study is the first time the GRACE-PF is exploited in a small catchment size (≤ 6,540 km2), proving 
an important insight about the potential of GRACE over a smaller region beyond its limit of spatial resolution 
at ~250 km.  

Preliminary results show that our developed technique successfully disaggregates the catchment-scale GRACE 
information into finer vertical and spatial scale (~25 km), leading to a significant improvement particularly in 
groundwater and, marginally in deep soil moisture components. On average, GRACE DA improves the 
groundwater storage computation in terms of correlation coefficient (ρ) by approximately ~47 % (from 0.38 to 
0.56). The ρ value changes from 0.535 to 0.543 by only 1.4 % for the deeper soil moisture (beneath 60 cm) 
computation. The improvement is found mainly from deeper layers with slower temporal variations, which is 
consistent with the interannual time scale of the GRACE signals being most characteristic over that catchment. 
However, GRACE DA slightly degrades the computation of the near surface soil moisture by approximately 
2.2 % (in ρ). The coarse temporal and spatial resolution of GRACE is attributed to the less impact of the 
GRACE DA on surface soil moisture estimation. 

In conclusion, it is apparent that GRACE DA provides a crucial benefit to deep storage computation. Further 
development will incorporate satellite soil moisture observations from Soil Moisture Ocean Salinity (SMOS) 
and Soil Moisture Active Passive (SMAP) missions with GRACE in the assimilation scheme to simultaneously 
improve different storage components, including surface soil moisture. Comprehensive evaluation of PF’s 
results in comparison to EnKF results will also be conducted to understand the filter’s performance with regard 
to accuracy of water storage estimates. 

Keywords: GRACE, data assimilation, particle filter, CABLE, Goulburn catchment, SASMAS, groundwater, 
soil moisture 

22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 
mssanz.org.au/modsim2017

1041



Tangdamrongsub et al., GRACE data assimilation using particle filter framework  

 
 

1. INTRODUCTION 

The terrestrial water storage (TWS) is a vital information for comprehensive understanding of the climate 
variation and the accurate assessment of the regional/global water resources. The TWS can be defined (but not 
limited to) as the integration of soil moisture, groundwater, surface water, snow, and canopy water storage, 
which all undoubtedly play very important roles in the hydrological cycle. The TWS can be simulated from 
the land surface model but the accuracy of computation is generally governed by the quality of the model 
physics and parameter calibration, and the accuracy of the input meteorological data. An alternative approach 
is to derive the TWS from Gravity Recovery And Climate Experiment (GRACE) observations, which has 
shown to be effective at a regional scale (Famiglietti et al., 2011). This motivates the development of GRACE 
data assimilation (DA) to improve the model estimates by integrating the GRACE observation into the system.  

GRACE DA has been effectively exploited to improve various hydrological components, e.g., groundwater 
(Tangdamrongsub et al., 2015), snow water equivalent (Su et al., 2010), root zone soil moisture and latent heat 
flux (Zaitchik et al., 2008), etc. Various DA schemes have recently been developed, including the inclusion of 
the GRACE’s full error variance-covariance information (e.g., Tangdamrongsub et al., 2017). However, most 
GRACE DA frameworks were developed based the ensemble Kalman filter (EnKF), which assumes the 
posterior distribution of the estimates to be Gaussian. In the extreme non-linear system, such as hydrologic 
system, however, the assumption might be violated and the DA might lead to the incorrect state estimate 
(Moradkhani et al., 2005). Particle filter (PF) is a variant of DA that does not restrict the type of the posterior 
distribution, which in turn can lead to a more reliable representation of the system. The PF has been successfully 
applied in the soil science (Dong et al., 2015), streamflow estimation (Weerts and El Serafy 2006), and only 
recently exploited in the GRACE literature (Khaki et al., 2017). 

In this study, GRACE data is assimilated into the Community Atmosphere Land Exchange (CABLE, Decker 
2015) model to improve the soil moisture and groundwater estimates. Our developed GRACE DA is 
demonstrated over the Goulburn river catchment located in the Upper Hunter Region of NSW, where the dense 
ground observation data are available for the validation. Importantly, this study is the first time the GRACE-
PF is exploited in such a small catchment (≤ 6,540 km2), proving an insight about the potential of GRACE over 
a region size beyond its limited spatial resolution of ~ 250 km. The performance of the developed PF scheme 
is evaluated against the ground observation data (volumetric soil moisture and groundwater level variation).  

2. STUDY REGION  

The Goulburn river catchment is located at the south-eastern part of the Murray-Darling basin and has 
temperate and semiarid climate (Fig. 1). The catchment is maintained by the Scaling and Assimilation of Soil 
Moisture and Streamflow (SASMAS) project (http://www.eng.newcastle.edu.au/sasmas/SASMAS/ 
sasdata.html), and has been used for soil science, meteorology, and streamflow prediction. The Goulburn 
catchment has a total area of 6,540 km2 and consists of more than 10 sub-catchments, including Krui and 
Merriwa catchments where the in situ soil moistures are regularly recorded.  

 

Figure 1. The geolocation of the Goulburn catchment (see also the inset figure (bottom-left)). The model grid 
cell (~25 km) is shown as a square tiles. The black x (cross) represents the location of the in situ soil moisture 
measurement while the red x (cross) represents the groundwater bore. All in situ data inside the same model 

grid cell are averaged. The grids S1 – S4 represent the averaged in situ soil moisture grid cells while G1 – G4 
represent the averaged in situ groundwater cells. 
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3. DATA AND LAND SURFACE MODEL 

3.1. GRACE Observation 

GRACE data and its full error variance-covariance matrix between January 2003 and December 2015 are 
obtained from the Center for Space Research (CSR), the University of Texas Austin. The error matrices beyond 
June 2014 are not available, and the monthly average values are used for the missing months. GRACE-derived 
TWS variation (∆TWS) and its uncertainty over the Goulburn catchment is computed following the approach 
in Tangdamrongsub et al. (2017). In brief, the destriping and smoothing filters are applied to the GRACE’s 
gravity coefficients before computing the ∆TWS. The signal restoration is applied to compensate the signal 
loss by the filters. To be consistent with the model estimate, the temporal mean value of TWS (Jan 2003 – Dec 
2015) from the model estimates is added to GRACE ∆TWS to obtain the absolute TWS. Additionally, the 
GRACE ∆TWS error matrix is derived based on its full error-variance covariance matrix using the error 
propagation law. This approach represents a more realistic GRACE uncertainty, which is spatially correlated, 
compared to the approach of the off-diagonal terms being omitted.  

3.2. In-situ Soil Moisture and Groundwater Data 

The surface and root zone soil moisture are obtained from the SASMAS network. Four different data associated 
with the measured depth at 0 – 5, 0 – 30, 30 – 60, and 60 – 90 cm are available in terms of volumetric soil 
moisture (θ). Furthermore, the in situ groundwater levels are obtained from the Department of Primary 
Industries, Office of Water, NSW (http://www.water.nsw.gov.au). All data inside the same model grid cell (Fig 
1) are then averaged for the later comparison. This results in four grid data of in situ soil moisture (S1 – S4) 
and four of the groundwater (G1 – G4). In situ data are averaged from hourly/daily to monthly time span for 
the later comparison with the GRACE DA result. 

3.3. CABLE Land Surface Model 

The Community Atmosphere and Biosphere Land Exchange (CABLE) model is used to predict the volumetric 
soil moisture and groundwater storage at approximately 25 km resolution. The model grid distribution is shown 
in Fig. 1. In this study, the model is forced with the meteorological input from the Global Land Data 
Assimilation System but replaced the precipitation with the data from Tropical Rainfall Measuring Mission. In 
DA process, precipitation, shortwave radiation, and air temperature are perturbed using an additive white noise 
with 10% of the nominal value. Model parameters associated with soil moisture and groundwater components 
are also perturbed with the same size (10%).  

4. GRACE DATA ASSIMILATION 

4.1. Particle Filter 

Particle filter uses the Monte Carlo method and associated weights (of each particle) to approximate the 
probability density function of the states’ estimate. Various implementation of PF has been developed to reduce 
the particle degeneracy and impoverishment problems (Weerts and El Serafy, 2006). This study uses the 
sequential importance resampling (SIR) approach. The GRACE DA process is shown in Fig. 2. The model 
states of each particle are firstly propagated through the model to obtain the forecasted or predicted states. 
When the observation is available, the states are updated using the new weights computed based on the 
likelihood function (see the right part of Fig. 2). The weight of each particle (ݓ௧௜) at time t is computed as 
follows: 

௧௜ݓ = ∗௧௜ݓ ෍ݓ௧௜∗ே
௜ୀଵ൘ , ሺ1ሻ 

∗௧௜ݓ = ∗௧ିଵ௜ݓ 	 1ሺ2ߨሻெ ଶ⁄ ሻଵ܀ሺݐ݁݀ ଶ⁄ ݁൤ି଴.ହቀ࢟೟ି۶࢞೟೔ቁ೅܀షభ൫࢟೟ି۶࢚࢞࢏൯൨, ሺ2ሻ 
where ࢟ is the observation vector containing GRACE observation, ࢞ is the model state vector, ۶ is the 
operational matrix transforming the model state vector to TWS, ܀ is the error matrix of the observation, ܯ is 
the number of observation, and ݅  is the index of the particle. After a few updates, most weights might degenerate 
to negligible values (e.g., close to zeros), and the propagations of these particles are meaningless. To resolve 
the severe depletion of particle, the resample approach is used to resample the model particles (Weerts and El  
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Figure 2. The processing diagram of the GRACE-PF scheme used in this study. 

Serafy, 2006). The resampled particles are then propagated to the next time step and the DA process is repeated 
until the last time step of the study period. 

4.2. Implementation 

The model states are updated at monthly time scale in consistence with GRACE temporal resolution. The 
model state vector (࢞) contains all grid cells of daily volumetric soil moisture in 6 different layers and 
groundwater components (total 7 elements) within approximately 1 month. The length of the vector is J×T×7, 
where J is the number of grid cells in the study area, and T is the number of day in a month. The monthly time 
window used for each update is based on the time tag of GRACE product. As the monthly window used to 
produce GRACE solution is not necessarily a calendar month (e.g., 1 Jan – 31 Jan), T is different in each update 
and varies between 13 and 31 days (following GRACE data used). Additionally, GRACE-derived ∆TWS is 
almost spatially uniform over the study area. The observation vector ࢟ then contains the monthly average 
values of the catchment mean TWS.  The matrix ۶ contains the scalar operator used to convert the volumetric 
soil moisture and groundwater into TWS of the month. The elements of ۶ are simply the thickness of each soil 
layer (2.2, 5.8, 15.4, 40.9, 108.5, 287.2 cm) and groundwater (20 m). For clarity, the matrix ۶ is demonstrated 
below: ۶ = ሾࢎௗୀଵ ௗୀଶࢎ ⋯ 	ௗୀ்ሿࢎ ሺ3ሻ ࢎௗ = ሾࢍ௝ୀଵ ௝ୀଶࢍ ⋯ 	௝ୀ௃ሿࢍ ሺ4ሻ ࢍ௝ = ሾݏଵ ଶݏ ଷݏ ସݏ ହݏ ଺ݏ ሿݓ݃ ⁄ܶܬ ሺ5ሻ 
where d represents the index of day, j is the index of grid cell, s is the thickness of each soil layer, and gw is 
the thickness of the groundwater layer. 

5. RESULTS 

5.1. Effective Number of Particles 

It is known that the number of particles is an important factor of the filter performance. We investigate this by 
evaluating the performance of the filter based on different number of particles. We firstly simulate the TWS 
from CABLE based on different forcing data and parameter sets, and define it as the truth. The error computed 
based on full error variance-covariance matrix of GRACE is used as the observation error. We then perform 
the DA (Fig. 2) using 10, 20, 50, 100, 200 and 300 particles. The catchment-average TWS from DA is then 
compared with the truth in terms of Nash-Sutcliff (NS) coefficient, and the results are shown in Fig. 3. The 
figure shows that applying PF leads to a significant agreement with the truth compared to the ensemble open 
loop (or model-only, EnOL) result. The filter performance is improved when a larger number of particles is 
used. Figure 3 also shows that the application of approximately 100 particles are sufficient in this study as no 
further improvement is seen when a greater number of particles is used. However, as the computation effort is 
not an issue in our study, we perform the GRACE DA using 300 particles to ensure the effectiveness of the 
filter. 

1044



Tangdamrongsub et al., GRACE data assimilation using particle filter framework  

 
 

 

Figure 3. NS coefficient between the catchment-averaged model-simulated TWS and the truth when 
different number of particle is used. EnOL represents the model-run only while PF is the particle filter result. 

5.2. TWS Estimates from GRACE DA 

The TWS estimates before and after GRACE DA are evaluated. The catchment-averaged ∆TWS is used for 
the comparison (Fig. 4). The PF result agrees better with the GRACE observation than the EnOL result.  It 
indicates that the PF approach successfully assimilates GRACE information into the final ∆TWS estimate. The 
NS coefficients estimated between 2003 and 2015 is substantially improved from 0.3 (EnOL) to 0.7 (PF). In 
Fig. 4, GRACE observations show greater variation at the beginning period (e.g., 2003 – 2004) which is likely 
caused by greater observation error at the beginning phase of the GRACE mission. As such, the PF estimated 
TWS is relatively less influenced by the GRACE observation during this period (NS values from PF in 2003-
2004 is only 0.3). The ∆TWS noticeably moves toward GRACE for the remaining period, particularly in e.g., 
2006/2007, 2008, and 2014. The model simulates lowered TWS in 2006/2007 by approximately 54 %, and the 
estimate is corrected after assimilating GRACE. Similar behaviour is seen when GRACE DA removes 
approximately 3 cm and 6 cm of water storage from the catchment when the model overestimates TWS in 2008 
and 2014, respectively. It is worth noting that GRACE DA changes the model storages in several extreme 
climate events. These include the increasing TWS during 2006/2007 drought, adding TWS during 2012 La 
Niña period, and subtracting TWS after the La Niña phase (2013 – 2014). 

 

Figure 4. Catchment-averaged ∆TWS estimated from the GRACE observation, model-only (EnOL), and 
GRACE DA (PF). The standard deviation is shown as the shading background. 

5.3. Improvement of Groundwater Storage Estimates 

The groundwater storage estimates are validated against the in situ groundwater records at four grid locations 
(G1 – G4, see Fig. 1). As the specific yield values are not available, we do not convert the in situ data (GW 
level change, ∆H) to the storage unit, and only validate the results in terms of temporal correlation. Time series 
and correlation coefficients (ρ) of the EnOL and PF groundwater estimates at G1 – G4 are shown in Fig. 5. 
Similar to ∆TWS, the PF estimated ∆GWS moves toward the in situ data. Particularly, GRACE DA improves 
the correlation in all locations, and on average, it increases the correlation value by ~47 % (from 0.38 to 0.56). 
Significant improvements are seen at G2 and G4, particularly at G4 where the correlation value increases 
almost twice (from 0.35 to 0.68). The good agreement is due to the slow hydrological process of the deep 
storage. The water passes through soil layers, acting like a low-pass filter, before reaching the groundwater 
layer. This leads to slower temporal variations of groundwater (compared to the top layers), which is consistent  
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Figure 5. Left: catchment-averaged ∆GWS and in situ data (GW level change, ∆H). Right: correlation 
coefficient between the groundwater storage estimates (from EnOL, and PF) and the in situ data in four 

different grid locations (see Fig. 1). The averaged correlation values are also shown. 

 

Figure 6. Cross correlation computed from the in situ groundwater data from four different grid locations 
(G1 – G4). The correlation value is dimensionless. 

with the interannual time scale of the GRACE signal. Additionally, GRACE DA apparently benefits the 
groundwater estimates of the  Goulburn catchment, particularly at a finer spatial resolution (~25 km) compared 
to GRACE itself (~250 km). This is possible likely due to the large unconfined aquifer of the Goulburn 
catchment. The groundwater variation in finer grid cells are spatially correlated (Fig. 6). The spatial correlation 
value is always greater than 0.55 and can reach as high as 0.9 (e.g., G1 vs. G4). In such a condition, assimilating 
a coarser spatial scale ∆TWS from the GRACE observation can benefit the groundwater estimate in the smaller 
individual grid cells.  

5.4. Performance of Soil Moisture Estimates 

The soil moisture estimates from GRACE DA is validated against the in situ data. The measured depth between 
the in situ data and the estimate is different, and therefore we aggregate the soil moisture estimates to have the 
measured depth as close as the in situ data. For example, the first two layers of CABLE estimated soil moisture 
(0 – 8 cm) are aggregated before comparing with the in situ surface soil moisture ߠଵ (0 – 5 cm). However, the 
bias due to the different measured depth might still exist, and therefore we only use the correlation coefficient 
to quantify the goodness of fit here. The correlation coefficient of ߠଵ െ  ସ is firstly computed at each gridߠ
location (S1 – S4), and the averaged correlation values (from all S1 – S4) are shown in Fig. 7. Noticeably, no 
substantial change is found from GRACE DA (2 % degradation from the near surface soil moisture estimates ߠଵ, ,ଶߠ  ସ, as opposed to EnOL). This is likely due to the fact that the near surfaceߠ ଷ and 1% improvement fromߠ
soil moisture exhibits more immediate responses to precipitation and evapotranspiration than what GRACE 
monthly measurement can capture. In addition, there is a greater spatial variability of the near surface soil 
moisture. Such a difference in temporal and spatial characteristics makes GRACE DA less influence surface 
storage computation.  

                

Figure 7. Left: correlation coefficients of four different soil moisture layers (ߠଵ െ  ସ) computed between theߠ
groundwater storage estimates (from EnOL, and PF) and the in situ data at S1 – S4 (see Fig. 1). Right: the 

averaged correlation coefficients computed using correlation values from four different locations. 
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6. CONCLUSIONS 

This study assimilates GRACE-derived TWS observation into the CABLE model using the PF framework, and 
the implementation is demonstrated over the Goulburn catchment. The GRACE DA helps to disaggregate the 
catchment-scale GRACE information into much finer vertical and spatial scale. The GRACE DA significantly 
improves computation of groundwater and deep soil moisture (beneath 60 cm) while it does not essentially 
change surface soil moisture computation. The different temporal and spatial characteristics of GRACE data 
make DA less responsive to surface soil moisture. Apparently, GRACE DA provides substantial benefit to the 
deep storage component. 

To further evaluate the advantage of PF, the GRACE-PF estimates will be evaluated against the results from 
other techniques, e.g., GRACE-EnKF. This will provide more insight onto different DA approaches, and also 
help maximize the accuracy of state estimation. Furthermore, the combined DA of satellite soil moisture 
observations from Soil Moisture Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP) missions 
with GRACE will be developed with the aim of improving all storage components, including the surface soil 
moisture (Tian et al., 2017). Finally, the developed DA will be applied to various river catchments to evaluate 
the effectiveness of the technique under the different climate condition and land cover.  
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